Effects of Flow Dependency Introduced by Background Error in Frequent and Dense Assimilation of Radial Winds Using Observation Error Correlated in Time and Space

Tadashi Fujita aMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Tadashi Fujita in
Current site
Google Scholar
PubMed
Close
,
Hiromu Seko aMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Hiromu Seko in
Current site
Google Scholar
PubMed
Close
, and
Takuya Kawabata aMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Takuya Kawabata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We investigated the effect of flow dependency in the assimilation of high-density, high-frequency observations. Radial winds from a Doppler radar are assimilated using a regional hybrid four-dimensional variational data assimilation (4D-Var) scheme with a flow-dependent background error covariance. To consistently assimilate 5 km × 5.625° cell-averaged radial winds at an interval of 10 min, the spatial and temporal correlations of the observation error are statistically diagnosed to be incorporated into the hybrid 4D-Var. The spatial correlation width is larger than that expected from instrument error, suggesting a contribution from representation error whose propagation is also considered to lead to temporal correlation, the width of which is diagnosed to increase with forecast time. The background error covariance also has an important role in incorporating observational information into the analysis. Single observation experiments show that the hybrid 4D-Var has more small-scale structure in its flow-dependent background error correlation than the 4D-Var limited from the climatological background error covariance mainly in the former part of the assimilation window. This suggests the higher potential of the hybrid 4D-Var to allow more higher-wavenumber components in the increment. A case study shows that the hybrid 4D-Var makes better use of the dense and frequent observations, reflecting more detailed representation of flow throughout the assimilation window, leading to promising results in the forecast. Sensitivity experiments also show that it is important to use the optimal observation error correlation. It is suggested that the flow-dependent background error becomes necessary to effectively use high-resolution, high-frequency observations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tadashi Fujita, tfujita@mri-jma.go.jp

Abstract

We investigated the effect of flow dependency in the assimilation of high-density, high-frequency observations. Radial winds from a Doppler radar are assimilated using a regional hybrid four-dimensional variational data assimilation (4D-Var) scheme with a flow-dependent background error covariance. To consistently assimilate 5 km × 5.625° cell-averaged radial winds at an interval of 10 min, the spatial and temporal correlations of the observation error are statistically diagnosed to be incorporated into the hybrid 4D-Var. The spatial correlation width is larger than that expected from instrument error, suggesting a contribution from representation error whose propagation is also considered to lead to temporal correlation, the width of which is diagnosed to increase with forecast time. The background error covariance also has an important role in incorporating observational information into the analysis. Single observation experiments show that the hybrid 4D-Var has more small-scale structure in its flow-dependent background error correlation than the 4D-Var limited from the climatological background error covariance mainly in the former part of the assimilation window. This suggests the higher potential of the hybrid 4D-Var to allow more higher-wavenumber components in the increment. A case study shows that the hybrid 4D-Var makes better use of the dense and frequent observations, reflecting more detailed representation of flow throughout the assimilation window, leading to promising results in the forecast. Sensitivity experiments also show that it is important to use the optimal observation error correlation. It is suggested that the flow-dependent background error becomes necessary to effectively use high-resolution, high-frequency observations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tadashi Fujita, tfujita@mri-jma.go.jp
Save
  • Bédard, J., and M. Buehner, 2020: A practical assimilation approach to extract smaller-scale information from observations with spatially correlated errors: An idealized study. Quart. J. Roy. Meteor. Soc., 146, 468482, https://doi.org/10.1002/qj.3687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennitt, G. V., H. R. Johnson, P. P. Weston, J. Jones, and E. Pottiaux, 2017: An assessment of ground-based GNSS zenith total delay observation errors and their correlations using the Met Office UKV model. Quart. J. Roy. Meteor. Soc., 143, 24362447, https://doi.org/10.1002/qj.3097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. Quart. J. Roy. Meteor. Soc., 136, 10361050, https://doi.org/10.1002/qj.616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., A. Collard, and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: Application to AIRS and IASI data. Quart. J. Roy. Meteor. Soc., 136, 10511063, https://doi.org/10.1002/qj.615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Quart. J. Roy. Meteor. Soc., 142, 17671780, https://doi.org/10.1002/qj.2774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryson, A. E., and L. J. Henrikson, 1968: Estimation using sampled data containing sequentially correlated noise. J. Spacecr. Rockets, 5, 662665, https://doi.org/10.2514/3.29327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, https://doi.org/10.1256/qj.04.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker, 2017: Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system. Mon. Wea. Rev., 145, 10191032, https://doi.org/10.1175/MWR-D-16-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, https://doi.org/10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Evensen, G., and K. S. Eikrem, 2018: Conditioning reservoir models on rate data using ensemble smoothers. Comput. Geosci., 22, 12511270, https://doi.org/10.1007/s10596-018-9750-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, A. M., 2019: Data compression in the presence of observational error correlations. Tellus, 71A, 1634937, https://doi.org/10.1080/16000870.2019.1634937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, A. M., S. L. Dance, and J. A. Waller, 2018: On the interaction of observation and prior error correlations in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 4862, https://doi.org/10.1002/qj.3183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., and Coauthors, 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 12181256, https://doi.org/10.1002/qj.3179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hólm, E. V., S. T. K. Lang, M. Fisher, T. Kral, and M. Bonavita, 2018: Distributed observations in meteorological ensemble data assimilation and forecasting. Proc. 21st Int. Conf. on Information Fusion (FUSION), Cambridge, United Kingdom, Institute of Electrical and Electronics Engineers, 9299, https://doi.org/10.23919/ICIF.2018.8455209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 34653475, https://doi.org/10.1256/qj.05.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of data assimilations at ECMWF. ECMWF Tech. Memo. 636, ECMWF, https://doi.org/10.21957/obke4k60.

    • Search Google Scholar
    • Export Citation
  • Ishikawa, Y. and K. Koizumi, 2006: Doppler radar wind data assimilation with the JMA Meso 4D-VAR. Research activities in atmospheric and oceanic modelling. CAS/JSC WGNE, 36, 01.11–01.12, https://www.wcrp-climate.org/WGNE/BlueBook/2006/individual-articles/01_Ishikawa_Yoshihiro_Doppler_Meso_4D-Var.pdf.

    • Search Google Scholar
    • Export Citation
  • Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 12571278, https://doi.org/10.1002/qj.3130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvinen, H., E. Andersson, and F. Bouttier, 1999: Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus, 51A, 469488, https://doi.org/10.3402/tellusa.v51i4.13963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Technical Progress Report on the global data-processing and forecasting system and numerical weather prediction, Japan Meteorological Agency, 229 pp., https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Y. Honda, and Y. Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensional variational data assimilation system. J. Meteor. Soc. Japan, 85, 255276, https://doi.org/10.2151/jmsj.85.255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139, 19111931, https://doi.org/10.1175/2011MWR3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z.-Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 13671386, https://doi.org/10.1256/003590002320373337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., E. Kalnay, and H. Li, 2013: Estimating and including observation-error correlations in data assimilation. Inverse Probl. Sci. Eng., 21, 387398, https://doi.org/10.1080/17415977.2012.712527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinnington, E. M., E. Casella, S. L. Dance, A. S. Lawless, J. I. L. Morison, N. K. Nichols, M. Wilkinson, and T. L. Quaife, 2016: Investigating the role of prior and observation error correlations in improving a model forecast of forest carbon balance using four-dimensional variational data assimilation. Agric. For. Meteor., 228–229, 299314, https://doi.org/10.1016/j.agrformet.2016.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainwater, S., C. H. Bishop, and W. F. Campbell, 2015: The benefits of correlated observation errors for small scales. Quart. J. Roy. Meteor. Soc., 141, 34393445, https://doi.org/10.1002/qj.2582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Kawabata, T. Tsuyuki, H. Nakamura, K. Koizumi, and T. Iwabuchi, 2004: Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation. J. Meteor. Soc. Japan, 82, 473489, https://doi.org/10.2151/jmsj.2004.473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonin, D., J. A. Waller, S. P. Ballard, S. L. Dance, and N. K. Nichols, 2019: A pragmatic strategy for implementing spatially correlated observation errors in an operational system: An application to Doppler radial winds. Quart. J. Roy. Meteor. Soc., 145, 27722790, https://doi.org/10.1002/qj.3592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., S. L. Dance, and N. K. Nichols, 2013: Data assimilation with correlated observation errors: Experiments with a 1-D shallow water model. Tellus, 65A, 19546, https://doi.org/10.3402/tellusa.v65i0.19546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., S. L. Dance, N. K. Nichols, J. R. Eyre, and J. Cameron, 2014: Estimating interchannel observation-error correlations for IASI radiance data in the Met Office system. Quart. J. Roy. Meteor. Soc., 140, 12361244, https://doi.org/10.1002/qj.2211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabeart, J. M., S. L. Dance, A. S. Lawless, N. K. Nichols, and J. A. Waller, 2020: Improving the condition number of estimated covariance matrices. Tellus, 72A, 119, https://doi.org/10.1080/16000870.2019.1696646.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., and T. Miyoshi, 2014: Data assimilation with error-correlated and non-orthogonal observations: Experiments with the Lorenz-96 model. SOLA, 10, 210213, https://doi.org/10.2151/sola.2014-044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., S. P. Ballard, S. L. Dance, G. Kelly, N. K. Nichols, and D. Simonin, 2016a: Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics. Remote Sens., 8, 581, https://doi.org/10.3390/rs8070581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., S. L. Dance, and N. K. Nichols, 2016b: Theoretical insight into diagnosing observation error correlations using observation-minus-background and observation-minus-analysis statistics. Quart. J. Roy. Meteor. Soc., 142, 418431, https://doi.org/10.1002/qj.2661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard, 2016c: Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics. Mon. Wea. Rev., 144, 35333551, https://doi.org/10.1175/MWR-D-15-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., E. Bauernschubert, S. L. Dance, N. K. Nichols, R. Potthast, and D. Simonin, 2019: Observation error statistics for Doppler radar radial wind super observations assimilated into the DWD COSMO-KENDA system. Mon. Wea. Rev., 147, 33513364, https://doi.org/10.1175/MWR-D-19-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wattrelot, E., T. Montmerle, and C. G. Guerrero, 2012: Evolution of the assimilation of radar data in the AROME model at convective scale. Proc. Seventh European Conf. on Radar in Meteorology and Hydrology, ERAD-12, Toulouse, France, Météo-France, http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/NWP_401_ext_abs.pdf.

    • Search Google Scholar
    • Export Citation
  • Weston, P. P., W. Bell, and J. R. Eyre, 2014: Accounting for correlated error in the assimilation of high-resolution sounder data. Quart. J. Roy. Meteor. Soc., 140, 24202429, https://doi.org/10.1002/qj.2306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., K. Nai, and L. Wei, 2007a: An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Quart. J. Roy. Meteor. Soc., 133, 407415, https://doi.org/10.1002/qj.21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., K. Nai, L. Wei, H. Lu, P. Zhang, S. Liu, and D. Parrish, 2007b: Estimating radar wind observation error and NCEP WRF background wind error covariances from radar radial-velocity innovations. 18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 1B.3, https://ams.confex.com/ams/pdfpapers/123419.pdf.

    • Search Google Scholar
    • Export Citation
  • Zeng, Y., T. Janjić, Y. Feng, U. Blahak, A. de Lozar, E. Bauernschubert, K. Stephan, and J. Min, 2021: Interpreting estimated observation error statistics of weather radar measurements using the ICON-LAM-KENDA system. Atmos. Meas. Tech., 14, 57355756, https://doi.org/10.5194/amt-14-5735-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 544 0 0
Full Text Views 417 139 14
PDF Downloads 392 92 18