Using a Cost-Effective Approach to Increase Background Ensemble Member Size within the GSI-Based EnVar System for Improved Radar Analyses and Forecasts of Convective Systems

Nicholas A. Gasperoni aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Nicholas A. Gasperoni in
Current site
Google Scholar
PubMed
Close
,
Xuguang Wang aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
, and
Yongming Wang aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yongming Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A valid time shifting (VTS) method is explored for the GSI-based ensemble variational (EnVar) system modified to directly assimilate radar reflectivity at convective scales. VTS is a cost-efficient method to increase ensemble size by including subensembles before and after the central analysis time. Additionally, VTS addresses common time and phase model error uncertainties within the ensemble. VTS is examined here for assimilating radar reflectivity in a continuous hourly analysis system for a case study of 1–2 May 2019. The VTS implementation is compared against a 36-member control experiment (ENS-36), to increase ensemble size (3 × 36 VTS), and as a cost-savings method (3 × 12 VTS), with time-shifting intervals τ between 15 and 120 min. The 3 × 36 VTS experiments increased the ensemble spread, with largest subjective benefits in early cycle analyses during convective development. The 3 × 12 VTS experiments captured analysis with similar accuracy as ENS-36 by the third hourly analysis. Control forecasts launched from hourly EnVar analyses show significant skill increases in 1-h precipitation over ENS-36 out to hour 12 for 3 × 36 VTS experiments, subjectively attributable to more accurate placement of the convective line. For 3 × 12 VTS, experiments with τ ≥ 60 min met and exceeded the skill of ENS-36 out to forecast hour 15, with VTS-3 × 12τ90 maximizing skill. Sensitivity results demonstrate preference to τ = 30–60 min for 3 × 36 VTS and 60–120 min for 3 × 12 VTS. The best 3 × 36 VTS experiments add a computational cost of 45%–67%, compared to the near tripling of costs when directly increasing ensemble size, while best 3 × 12 VTS experiments save about 24%–41% costs over ENS-36.

Significance Statement

The purpose of this work is to study a valid time shifting method to improve the prediction of severe convective storm systems over the continental United States. This method improves ensemble-based radar reflectivity analyses by including ensemble member information at times before and after the analysis time, thereby increasing the ensemble size at just a fractional added computational cost. The results show the method can boost the accuracy of high-resolution convection prediction out to at least 12 h. This case study motivates future systematic testing in a real-time setting and potential implementation to enhance the U.S. operational ensemble-based convection-allowing forecast model and data assimilation system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas A. Gasperoni, ngaspero@ou.edu

Abstract

A valid time shifting (VTS) method is explored for the GSI-based ensemble variational (EnVar) system modified to directly assimilate radar reflectivity at convective scales. VTS is a cost-efficient method to increase ensemble size by including subensembles before and after the central analysis time. Additionally, VTS addresses common time and phase model error uncertainties within the ensemble. VTS is examined here for assimilating radar reflectivity in a continuous hourly analysis system for a case study of 1–2 May 2019. The VTS implementation is compared against a 36-member control experiment (ENS-36), to increase ensemble size (3 × 36 VTS), and as a cost-savings method (3 × 12 VTS), with time-shifting intervals τ between 15 and 120 min. The 3 × 36 VTS experiments increased the ensemble spread, with largest subjective benefits in early cycle analyses during convective development. The 3 × 12 VTS experiments captured analysis with similar accuracy as ENS-36 by the third hourly analysis. Control forecasts launched from hourly EnVar analyses show significant skill increases in 1-h precipitation over ENS-36 out to hour 12 for 3 × 36 VTS experiments, subjectively attributable to more accurate placement of the convective line. For 3 × 12 VTS, experiments with τ ≥ 60 min met and exceeded the skill of ENS-36 out to forecast hour 15, with VTS-3 × 12τ90 maximizing skill. Sensitivity results demonstrate preference to τ = 30–60 min for 3 × 36 VTS and 60–120 min for 3 × 12 VTS. The best 3 × 36 VTS experiments add a computational cost of 45%–67%, compared to the near tripling of costs when directly increasing ensemble size, while best 3 × 12 VTS experiments save about 24%–41% costs over ENS-36.

Significance Statement

The purpose of this work is to study a valid time shifting method to improve the prediction of severe convective storm systems over the continental United States. This method improves ensemble-based radar reflectivity analyses by including ensemble member information at times before and after the analysis time, thereby increasing the ensemble size at just a fractional added computational cost. The results show the method can boost the accuracy of high-resolution convection prediction out to at least 12 h. This case study motivates future systematic testing in a real-time setting and potential implementation to enhance the U.S. operational ensemble-based convection-allowing forecast model and data assimilation system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas A. Gasperoni, ngaspero@ou.edu
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., 2017: A review of operational methods of variational and ensemble‐variational data assimilation. Quart. J. Roy. Meteor. Soc., 143, 607633, https://doi.org/10.1002/qj.2982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., E. Holm, L. Isaksen, and M. Fisher, 2016: The evolution of the ECMWF hybrid data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 287303, https://doi.org/10.1002/qj.2652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, https://doi.org/10.5194/npg-20-669-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J.-F., Y. Michel, T. Montmerle, and É. Arbogast, 2019: Improving background error covariances in a 3D ensemble–variational data assimilation system for regional NWP. Mon. Wea. Rev., 147, 135151, https://doi.org/10.1175/MWR-D-18-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2019: Spring forecasting experiment 2019 conducted by the experimental forecast program of the NOAA/Hazardous Weather Testbed: Program overview and operations plan. NOAA, 39 pp., https://hwt.nssl.noaa.gov/sfe/2019/docs/HWT_SFE2019_operations_plan.pdf.

  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, https://doi.org/10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, F. Kong, and M. Xue, 2014: Using varied microphysics to account for uncertainty in warm-season QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 21982219, https://doi.org/10.1175/MWR-D-13-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, F. Kong, M. Xue, and J. Berner, 2016: Impact of a stochastic kinetic energy backscatter scheme on warm season convection-allowing ensemble forecasts. Mon. Wea. Rev., 144, 18871908, https://doi.org/10.1175/MWR-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10  143–10  162, https://doi.org/10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., X. Wang, and Y. Wang, 2020: A comparison of methods to sample model errors for convection-allowing ensemble forecasts in the setting of multiscale initial conditions produced by the GSI-based EnVar assimilation system. Mon. Wea. Rev., 148, 11771203, https://doi.org/10.1175/MWR-D-19-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., J. Bojarova, and O. Vignes, 2014: A hybrid variational ensemble data assimilation for the High Resolution Limited Area Model (HIRLAM). Nonlinear Processes Geophys., 21, 303323, https://doi.org/10.5194/npg-21-303-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014,0155:HTFENP.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, B., and X. Wang, 2013: Effects of sequential or simultaneous assimilation of observations and localization methods on the performance of the ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 139, 758770, https://doi.org/10.1002/qj.2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., X. Deng, H. L. Mitchell, S.-J. Baek, and N. Gagnon, 2014: Higher resolution in an operational ensemble Kalman filter. Mon. Wea. Rev., 142, 11431162, https://doi.org/10.1175/MWR-D-13-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and X. Wang, 2018: On the use of cost-effective valid-time-shifting (VTS) method to increase ensemble size in the GFS hybrid 4DenVar system. Mon. Wea. Rev., 146, 29732998, https://doi.org/10.1175/MWR-D-18-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2016: A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Wea. Rev., 144, 25792604, https://doi.org/10.1175/MWR-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, Y. Wang, A. Reinhart, A. J. Clark, and I. L. Jirak, 2020: Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 Hazardous Weather Testbeds. Wea. Forecasting, 35, 169191, https://doi.org/10.1175/WAF-D-19-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., I. Jankov, T. Alcott, J. Olson, J. Beck, J. Berner, D. Dowell, and C. Alexander, 2021: A progress report on the development of the High-Resolution Rapid Refresh ensemble. Wea. Forecasting, 36, 791804, https://doi.org/10.1175/WAF-D-20-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2017: Evaluating the trade‐offs between ensemble size and ensemble resolution in an ensemble‐variational data assimilation system. J. Adv. Model. Earth Syst., 9, 781789, https://doi.org/10.1002/2016MS000864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2017: Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size. Quart. J. Roy. Meteor. Soc., 143, 10621072, https://doi.org/10.1002/qj.2990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., H. Yuan, B. E. Schwartz, and S. G. Benjamin, 2007: Short-range numerical weather prediction using time-lagged ensembles. Wea. Forecasting, 22, 580595, https://doi.org/10.1175/WAF999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., Q. Xu, M. Yao, and S. Gao, 2011: Time-expanded sampling for ensemble-based filters: Assimilation experiments with real radar observations. Adv. Atmos. Sci., 28, 743757, https://doi.org/10.1007/s00376-010-0021-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017: GSI-based, continuously cycled, dual-resolution hybrid ensemble-variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., Y. Zhu, R. Wobus, and P. Wang, 2012: An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Adv. Atmos. Sci., 29, 782794, https://doi.org/10.1007/s00376-012-1249-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., K. Kondo, and T. Imamura, 2014: The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 52645271, https://doi.org/10.1002/2014GL060863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., and J. Schmidt, 2015: Applying a neighborhood fractions sampling approach as a diagnostic tool. Mon. Wea. Rev., 143, 47364749, https://doi.org/10.1175/MWR-D-14-00411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulent closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., K. Zhu, M. Xue, X. Wang, M. Hu, S. G. Benjamin, S. S. Weygandt, and J. S. Whitaker, 2014: A GSI-based coupled EnSRF–En3DVar hybrid data assimilation system for the operational Rapid Refresh model: Tests at a reduced resolution. Mon. Wea. Rev., 142, 37563780, https://doi.org/10.1175/MWR-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2019: Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment. Wea. Forecasting, 34, 13951416, https://doi.org/10.1175/WAF-D-19-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., B. Gallo, I. Jirak, A. Clark, D. Dowell, X. Wang, and Y. Wang, 2020: What makes a convection allowing ensemble of opportunity so good at forecasting thunderstorms? Wea. Forecasting, 35, 22932316, https://doi.org/10.1175/WAF-D-20-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2013: The impact of covariance localization for radar data on EnKF analyses of a developing MCS: Observing system simulation experiments. Mon. Wea. Rev., 141, 36913709, https://doi.org/10.1175/MWR-D-12-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and Coauthors, 2018: Impact of assimilating aircraft reconnaissance observations on tropical cyclone initialization and prediction using operational HWRF and GSI ensemble–variational hybrid data assimilation. Mon. Wea. Rev., 146, 41554177, https://doi.org/10.1175/MWR-D-17-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, https://doi.org/10.1175/2008MWR2445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, https://doi.org/10.1175/2008MWR2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model errors due to unresolved scales. Mon. Wea. Rev., 137, 32193232, https://doi.org/10.1175/2009MWR2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2021a: Development of convective-scale static background error covariance within GSI-based hybrid EnVar system for direct radar reflectivity data assimilation. Mon. Wea. Rev., 149, 27132736, https://doi.org/10.1175/MWR-D-20-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2021b: Rapid update with EnVar direct radar reflectivity data assimilation for the NOAA regional convection-allowing NMMB model over the CONUS: System description and initial experiment results. Atmosphere, 12, 1286, https://doi.org/10.3390/atmos12101286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Min, Y. Chen, X.-Y. Huang, M. Zeng, and X. Li, 2017: Improving precipitation forecast with hybrid 3DVar and time-lagged ensembles in a heavy rainfall event. Atmos. Res., 183, 116, https://doi.org/10.1016/j.atmosres.2016.07.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., H. Lu, S. Gao, M. Xue, and M. Tong, 2008a: Time-expanded sampling for ensemble Kalman filter: Assimilation experiments with simulated radar observations. Mon. Wea. Rev., 136, 26512667, https://doi.org/10.1175/2007MWR2185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, H. Lu, C. Qiu, and Q. Zhao, 2008b: Time-expanded sampling for ensemble-based filters: Assimilation experiments with a shallow-water equation model. J. Geophys. Res., 113, D02114, https://doi.org/10.1029/2007JD008624.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Z. Gong, J. Wang, and X. Liu, 2011: Time-expanded sampling approach for ensemble Kalman filter: Experiment assimilation of simulated soundings. Acta Meteor. Sin., 25, 558567, https://doi.org/10.1007/s13351-011-0502-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., Q. Xu, Y. Jin, J. McLay, and C. Reynolds, 2015: Time-expanded sampling for ensemble-based data assimilation applied to conventional and satellite observations. Wea. Forecasting, 30, 855872, https://doi.org/10.1175/WAF-D-14-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, and R. Wobus, 2017: Performance of the new NCEP Global Ensemble Forecast System in a parallel experiment. Wea. Forecasting, 32, 19892004, https://doi.org/10.1175/WAF-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, K., Y. Pan, M. Xue, X. Wang, J. S. Whitaker, S. G. Benjamin, S. S. Weygandt, and M. Hu, 2013: A regional GSI-based ensemble Kalman filter data assimilation system for the Rapid Refresh configuration: Testing at reduced resolution. Mon. Wea. Rev., 141, 41184139, https://doi.org/10.1175/MWR-D-13-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 276 0 0
Full Text Views 435 163 11
PDF Downloads 430 128 11