The Evolution of Asymmetries in the Tropical Cyclone Boundary Layer Wind Field during Landfall

James Hlywiak aRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by James Hlywiak in
Current site
Google Scholar
PubMed
Close
and
David S. Nolan aRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Last, a brief analysis of in situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in situ data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally homogeneous surface types—which have been well documented by previous studies—are inappropriate for use near strong frictional heterogeneity.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Hlywiak, jhlywiak@rsmas.miami.edu

Abstract

The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Last, a brief analysis of in situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in situ data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally homogeneous surface types—which have been well documented by previous studies—are inappropriate for use near strong frictional heterogeneity.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Hlywiak, jhlywiak@rsmas.miami.edu
Save
  • Alford, A. A., M. I. Biggerstaff, G. D. Carrie, J. L. Schroeder, B. D. Hirth, and S. M. Waugh, 2019: Near-surface maximum winds during the landfall of Hurricane Harvey. Geophys. Res. Lett., 46, 973982, https://doi.org/10.1029/2018GL080013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, A. A., J. A. Zhang, M. I. Biggerstaff, P. Dodge, F. D. Marks, and D. J. Bodine, 2020: Transition of the hurricane boundary layer during the landfall of Hurricane Irene (2011). J. Atmos. Sci., 77, 35093531, https://doi.org/10.1175/JAS-D-19-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, R., 2009: Tropical cyclone report: Hurricane Ike (1–14 September 2008). National Hurricane Center Rep. AL092008, 55 pp., https://www.nhc.noaa.gov/data/tcr/AL092008_Ike.pdf.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, R. Berg, and A. Hagen, 2019: Tropical cyclone report: Hurricane Michael (7–11 October 2018). National Hurricane Center Rep. AL142018, 86 pp., https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

    • Search Google Scholar
    • Export Citation
  • Blackwell, K. G., 2000: The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Mon. Wea. Rev., 128, 40024016, https://doi.org/10.1175/1520-0493(2000)129<4002:TEOHDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and D. A. Zelinsky, 2018: Tropical cyclone report: Hurricane Harvey (17 August–1 September 2017). National Hurricane Center Rep. AL092017, 77 pp., https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.

    • Search Google Scholar
    • Export Citation
  • Callaghan, J., 2019: The interaction of Hurricane Michael with an upper trough leading to intensification right up to landfall. Trop. Cyclone Res. Rev., 8, 95102, https://doi.org/10.1016/j.tcrr.2019.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Y., and R. G. Fovell, 2016: Downslope windstorms of San Diego County. Part I: A case study. Mon. Wea. Rev., 144, 529552, https://doi.org/10.1175/MWR-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 22942312, https://doi.org/10.1175/1520-0469(2003)060<2294:ASIASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, https://doi.org/10.1175/MWR-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, C. C. Weiss, D. A. Smith, and M. I. Biggerstaff, 2012: Research radar analyses of the internal boundary layer over Cape Canaveral, Florida, during the landfall of Hurricane Frances (2004). Wea. Forecasting, 27, 13491372, https://doi.org/10.1175/WAF-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hlywiak, J., 2021: Modifications to the tropical cyclone intensity and wind structure resulting from surface-boundary layer interactions over coastal and inland environments. Ph.D. thesis, University of Miami, 206 pp.

    • Search Google Scholar
    • Export Citation
  • Hlywiak, J., and D. S. Nolan, 2021: The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Sci., 78, 9831000, https://doi.org/10.1175/JAS-D-20-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada Level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2006: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21692193, https://doi.org/10.1175/JAS3745.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and H. Jiang, 2017: Examination of surface wind asymmetries in tropical cyclones. Part I: General structure and wind shear impacts. Mon. Wea. Rev., 145, 39894009, https://doi.org/10.1175/MWR-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved tropical-cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, https://doi.org/10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Z. Pu, and Z. Gao, 2021: Effects of roll vortices on the evolution of Hurricane Harvey during landfall. J. Atmos. Sci., 78, 18471867, https://doi.org/10.1175/JAS-D-20-0270.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., K. K. Cheung, and J. C. Chan, 2014: Numerical study on the development of asymmetric convection and vertical wind shear during tropical cyclone landfall. Quart. J. Roy. Meteor. Soc., 140, 18661877, https://doi.org/10.1002/qj.2259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., K. K. Cheung, and J. C. Chan, 2015: Modelling the effects of land-sea contrast on tropical cyclone precipitation under environmental vertical wind shear. Quart. J. Roy. Meteor. Soc., 141, 396412, https://doi.org/10.1002/qj.2359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, J. O. J., and S. Y. Hong, 2005: Effects of bulk ice microphysics on the simulated monsoonal precipitation over East Asia. J. Geophys. Res., 110, D2420, https://doi.org/10.1029/2005JD006166.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, https://doi.org/10.1175/JAS3508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., B. D. McNoldy, and J. Yunge, 2021a: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part I: Model initialization and simulation validation. Mon. Wea. Rev., 149, 679695, https://doi.org/10.1175/MWR-D-20-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., B. D. McNoldy, J. Yunge, F. J. Masters, and I. M. Giammanco, 2021b: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part II: Surface winds, inflow angles, and boundary layer profiles. Mon. Wea. Rev., 149, 697713, https://doi.org/10.1175/MWR-D-20-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, 908931, https://doi.org/10.1002/2016MS000796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G., H. M. Zhang, H. P. Frank, J. R. Bidlot, M. Higaki, S. Stevens, and W. R. Hankins, 2013: Evaluation of various surface wind products with ocean SITES buoy measurements. Wea. Forecasting, 28, 12811303, https://doi.org/10.1175/WAF-D-12-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932, https://doi.org/10.1175/1520-0493(1982)110<1912:TTOTHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, https://doi.org/10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. C., and J. C. Chan, 2010: Structural changes of a tropical cyclone during landfall: β-plane simulations. Adv. Atmos. Sci., 27, 11431150, https://doi.org/10.1007/s00376-009-9136-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, X., and Z. Tan, 2006: Boundary-layer wind structure in a landfalling tropical cyclone. Adv. Atmos. Sci., 23, 737749, https://doi.org/10.1007/s00376-006-0737-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 12901311, https://doi.org/10.1175/MWR-D-13-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. A. Zhang, R. F. Rogers, B. Jaimes, and L. K. Shay, 2021: The rapid intensification of Hurricane Michael (2018): Storm structure and the relationship to environmental and air–sea interactions. Mon. Wea. Rev., 149, 245267, https://doi.org/10.1175/MWR-D-20-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. J., 2019: Idealized simulations of the inner core boundary layer structure in a landfalling tropical cyclone. Part I: Kinematic structure. Trop. Cyclone Res. Rev., 8, 4767, https://doi.org/10.1016/j.tcrr.2019.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. L., and J. C. Chan, 2007: Modeling the effects of land-sea roughness contrast on tropical cyclone winds. J. Atmos. Sci., 64, 32493264, https://doi.org/10.1175/JAS4027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., H. Jiang, and X. Kang, 2014: Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in South China and Southeast United States. Atmos. Res., 139, 1826, https://doi.org/10.1016/j.atmosres.2013.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011a: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. Zhu, F. J. Masters, R. F. Rogers, and F. D. Marks, 2011b: On momentum transport and dissipative heating during hurricane landfalls. J. Atmos. Sci., 68, 13971404, https://doi.org/10.1175/JAS-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 799 0 0
Full Text Views 875 518 69
PDF Downloads 679 313 31