• Alpert, J., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726733.

    • Search Google Scholar
    • Export Citation
  • Baxter, M. A., G. M. Lackmann, K. M. Mahoney, T. E. Workoff, and T. M. Hamill, 2014: Verification of precipitation reforecasts over the Southeast United States. Wea. Forecasting, 29, 11991207, https://doi.org/10.1175/WAF-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candille, G., 2009: The multiensemble approach: The NAEFS example. Mon. Wea. Rev., 137, 16551665, https://doi.org/10.1175/2008MWR2682.1.

  • Candille, G., S. Beauregard, and N. Gagnon, 2010: Bias correction and multiensemble in the NAEFS context or how to get a “free calibration” through a multiensemble approach. Mon. Wea. Rev., 138, 42684281, https://doi.org/10.1175/2010MWR3349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H. Y., and J. J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady‐Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demargne, J., and Coauthors, 2014: The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Amer. Meteor. Soc., 95, 7998, https://doi.org/10.1175/BAMS-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, J. L., and P. J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833855, https://doi.org/10.1175/1520-0450(1989)028<0833:AGCOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Y. Xia, J. Meng, R. Shresha, H, Wei, J. Dong, Y. Wu, and W. Zheng, 2016; Land prediction in NCEP modeling systems: Current status and future plans. NOAA, 29 pp., weather.gov/media/sti/nggps/10_Ek%20EMC-land-NGGPS-Feb2016.pdf.

    • Search Google Scholar
    • Export Citation
  • EMCs, 2019: GFS v15 implementation in June 2019. NOAA, accessed 1 September 2021, https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php.

    • Search Google Scholar
    • Export Citation
  • Emerton, R., and Coauthors, 2018: Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0. Geosci. Model Dev., 11, 33273346, https://doi.org/10.5194/gmd-11-3327-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and T. M. Hamill, 2015: Diagnosis of track forecast errors for tropical cyclone Rita, 2005: Using GEFS reforecasts. Wea. Forecasting, 30, 13341354, https://doi.org/10.1175/WAF-D-15-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gascon, E., D. Lavers, T. M. Hamill, D. S. Richardson, Z. Ben Bouallegue, M. Leutbecher, and F. Pappenberger, 2019: Statistical post-processing of dual-resolution ensemble precipitation forecasts across Europe. Quart. J. Roy. Meteor. Soc., 145, 32183235, https://doi.org/10.1002/qj.3615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., and Y. Zhu, 2017: Development of verification methodology for extreme weather forecasts. Wea. Forecasting, 32, 479491, https://doi.org/10.1175/WAF-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., B. Cui, and Y. Zhu, 2015: Improvement of statistical postprocessing using GEFS reforecast information. Wea. Forecasting, 30, 841854, https://doi.org/10.1175/WAF-D-14-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., Y. Zhu, E. Sinsky, W. Li, X. Zhou, D. Hou, C. Melhauser, and R. Wobus, 2019: Systematic error analysis and calibration of 2-m temperature for the NCEP GEFS reforecast of the Subseasonal Experiment (SubX) project. Wea. Forecasting, 34, 361376, https://doi.org/10.1175/WAF-D-18-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., 2008: Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, No. 117, ECMWF, Reading, United Kingdom, 813.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: 2-meter temperature. Mon. Wea. Rev., 136, 26082619, https://doi.org/10.1175/2007MWR2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., R. Buizza, T. M. Hamill, M. Leutbecher, and T. N. Palmer, 2012: Comparing TIGGE multi-model forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 18141827, https://doi.org/10.1002/qj.1895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2012: Verification of TIGGE Multi-model and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the conterminous US. Mon. Wea. Rev., 140, 22322252, https://doi.org/10.1175/MWR-D-11-00220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2017: Changes in the systematic errors of global reforecasts due to an evolving data assimilation system. Mon. Wea. Rev., 145, 24792485, https://doi.org/10.1175/MWR-D-17-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and G. N. Kiladis, 2013: Skill of the MJO and Northern Hemispheric blocking in GEFS medium-range reforecasts. Mon. Wea. Rev., 142, 686885, https://doi.org/10.1175/MWR-D-13-00199.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and M. Scheuerer, 2018: Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing. Mon. Wea. Rev., 146, 40794098, https://doi.org/10.1175/MWR-D-18-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts, an important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, https://doi.org/10.1175/BAMS-87-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, https://doi.org/10.1175/2007MWR2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast data set. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS Reforecasts and Climatology-Calibrated Precipitation Analyses. Mon. Wea. Rev., 143, 33003309, https://doi.org/10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Coauthors, 2022: The reanalysis for the Global Ensemble Forecast System, version 12. Mon. Wea. Rev., 150, 5979, https://doi.org/10.1175/MWR-D-21-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., D. Huppert, and D. P. Lettenmaier, 2002: The economic value of long-lead streamflow forecasts for Columbia River hydropower. J. Water Resour. Plann. Manage., 128, 91101, https://doi.org/10.1061/(ASCE)0733-9496(2002)128:2(91).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., M. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S. J. Lin, 2013: A two‐way nested global‐regional dynamical core on the cubed‐sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, https://doi.org/10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., and J. W. Hansen, 2006: Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteor., 138, 4453, https://doi.org/10.1016/j.agrformet.2006.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, https://doi.org/10.1029/1999JD900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lalaurette, F., 2003: Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Quart. J. Roy. Meteor. Soc., 129, 30373057, https://doi.org/10.1256/qj.02.152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. P. Cangialosi, 2018: Have we reached the limits of predictability for tropical cyclone track forecasting? Bull. Meteor. Amer. Soc., 99, 22372243, https://doi.org/10.1175/BAMS-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and Coauthors, 2019: Evaluating the MJO prediction skill from different configurations of NCEP GEFS extended forecast. Climate Dyn., 52, 49234936, https://doi.org/10.1007/s00382-018-4423-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498, https://doi.org/10.1002/qj.49712354416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, P. J., 1984: A general unified similarity theory for the calculation of turbulent fluxes in the numerical weather prediction models for unstable condition. Office Note 302, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Long, P. J., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the Medium-Range Forecast Model. Office Note 321, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 24 pp.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Zhu, D. Hou, Y. Lin, and P. Xie, 2018: The NCEP’s Climatology-Calibrated Precipitation Analysis (CCPA) Version 4. 32nd Conf. on Hydrology, Austin, TX, Amer. Meteor. Soc., 49, https://ams.confex.com/ams/98Annual/webprogram/Paper325379.html.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., H. Wei, S. Lu, G. Gayno, and J. Meng, 2005: NCEP implements major upgrade to its medium-range global forecast system, including land-surface component. GEWEX Newsletter, No. 15, International GEWEX Project Office, Silver Spring, MD, 8–9, http://www.gewex.org/Nov2005.pdf.

    • Search Google Scholar
    • Export Citation
  • Nardi, K. M., E. A. Barnes, and F. M. Ralph, 2018: Assessment of numerical weather prediction model reforecasts of the occurrence, intensity, and location of atmospheric rivers along the west coast of North America. Mon. Wea. Rev., 146, 33433362, https://doi.org/10.1175/MWR-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y.-C., A. H. N. Lim, H.-L. Huang, and M. D. Goldberg, 2020: Global forecast impact of low data latency infrared and microwave sounders observations from polar orbiting satellites. Remote Sens., 12, 2193, https://doi.org/10.3390/rs12142193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ou, M., M. Charles, and D. Collins, 2016: Sensitivity of calibrated week-2 probabilistic forecast skill to reforecast sampling of the NCEP Global Ensemble Forecast System. Wea. Forecasting, 31, 10931107, https://doi.org/10.1175/WAF-D-15-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, https://doi.org/10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2012: Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. Quart. J. Roy. Meteor. Soc., 138, 841861, https://doi.org/10.1002/qj.1923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp., https://doi.org/10.21957/ps8gbwbdv.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multi‐model subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted Gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2018: Generating calibrated ensembles of physically realistic, high-resolution precipitation forecast fields based on GEFS model output. J. Hydrometeor., 19, 16511670, https://doi.org/10.1175/JHM-D-18-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw ensemble output (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Wea. Rev., 138, 41994211, https://doi.org/10.1175/2010MWR3285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, https://doi.org/10.1256/qj.04.106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., T. N. Palmer, M. Miller and A. Beljaars, 2004: The use of high-resolution simulations of tropical circulation to calibrate stochastic physics schemes. Proc. Workshop on Simulation and Prediction of Intra-Seasonal Variability with Emphasis on the MJO, Reading, United Kingdom, ECMWF, 83102, https://www.ecmwf.int/node/16053.

    • Search Google Scholar
    • Export Citation
  • Specq, D., and L. Batté, 2020: Improving subseasonal precipitation forecasts through a statistical–dynamical approach: Application to the southwest tropical Pacific. Climate Dyn., 55, 19131927, https://doi.org/10.1007/s00382-020-05355-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, Elsevier, 467 pp.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, https://doi.org/10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, W., H. Wei, Z. Wang, X. Zeng, J. Meng, M. Ek, K. Mitchell, and J. Derber, 2012: Improvement of daytime land surface skin temperature over arid regions in the NCEPGFS model and its impact on satellite data assimilation. J. Geophys. Res., 117, D06117, https://doi.org/10.1029/2011JD015901.

    • Search Google Scholar
    • Export Citation
  • Zheng, W., M. Ek, K. Mitchell, H. Wei, and J. Meng, 2017: Improving the stable surface layer in the NCEP global forecast system. Mon. Wea. Rev., 145, 39693987, https://doi.org/10.1175/MWR-D-16-0438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, B. Fu, D. Hou, J. Peng, Y. Luo, and W. Li, 2019: The development of Next NCEP Global Ensemble Forecast System. 43rd NOAA Annual Climate Diagnostics and Prediction Workshop, Santa Barbara, CA, NOAA, 159–163, https://www.nws.noaa.gov/ost/climate/STIP/43CDPW/43cdpw-XZhou.pdf.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., D. Hou, M. Wei, R. Wobus, J. Ma, B. Cui, and S. Moorthi, 2012: GEFS upgrade—AOP plan—major implementation. NOAA, http://www.emc.ncep.noaa.gov/gmb/yzhu/html/imp/201109_imp.html.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., X. Zhou, M. Pena, W. Li, C. Melhauser, and D. Hou, 2017: Impact of sea surface temperature forcing on weeks 3 and 4 forecast skill in the NCEP Global Ensemble Forecast System. Wea. Forecasting, 32, 21592174, https://doi.org/10.1175/WAF-D-17-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2018: Toward the improvement of sub-seasonal prediction in the NCEP Global Ensemble Forecast System. J. Geophys. Res. Atmos., 123, 67326745, https://doi.org/10.1029/2018JD028506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zobler, L., 1986: A world soil file for global climate modelling. NASA Tech. Memo. TM-87802, 33 pp.

  • Zobler, L., 1999: Global soil types, 1-degree grid (Zobler). ORNL/DAAC, accessed 1 September 2021, https://doi.org/10.3334/ORNLDAAC/418.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 957 953 206
Full Text Views 381 379 34
PDF Downloads 395 393 34

GEFSv12 Reforecast Dataset for Supporting Subseasonal and Hydrometeorological Applications

Hong GuanaSRG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Hong Guan in
Current site
Google Scholar
PubMed
Close
,
Yuejian ZhubNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Yuejian Zhu in
Current site
Google Scholar
PubMed
Close
,
Eric SinskycIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Eric Sinsky in
Current site
Google Scholar
PubMed
Close
,
Bing FucIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Bing Fu in
Current site
Google Scholar
PubMed
Close
,
Wei LicIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
,
Xiaqiong ZhoudCPAESS, University Corporation for Atmospheric Research at NOAA/NWS/NCEP/EMC and NOAA/OAR/GFDL, Princeton, New Jersey

Search for other papers by Xiaqiong Zhou in
Current site
Google Scholar
PubMed
Close
,
Xianwu XueaSRG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Xianwu Xue in
Current site
Google Scholar
PubMed
Close
,
Dingchen HoubNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Dingchen Hou in
Current site
Google Scholar
PubMed
Close
,
Jiayi PengcIMSG at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Jiayi Peng in
Current site
Google Scholar
PubMed
Close
,
M. M. NageswararaoeCPAESS, University Corporation for Atmospheric Research at NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by M. M. Nageswararao in
Current site
Google Scholar
PubMed
Close
,
Vijay TallapragadabNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Vijay Tallapragada in
Current site
Google Scholar
PubMed
Close
,
Thomas M. HamillfNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Thomas M. Hamill in
Current site
Google Scholar
PubMed
Close
,
Jeffrey S. WhitakerfNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Jeffrey S. Whitaker in
Current site
Google Scholar
PubMed
Close
,
Gary BatesgCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Gary Bates in
Current site
Google Scholar
PubMed
Close
,
Philip PegionfNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Philip Pegion in
Current site
Google Scholar
PubMed
Close
,
Sherrie FrederickfNOAA/Physical Sciences Laboratory, Boulder, Colorado
gCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Sherrie Frederick in
Current site
Google Scholar
PubMed
Close
,
Matthew RosencranshNOAA/NWS/NCEP/CPC, College Park, Maryland

Search for other papers by Matthew Rosencrans in
Current site
Google Scholar
PubMed
Close
, and
Arun KumarhNOAA/NWS/NCEP/CPC, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For the newly implemented Global Ensemble Forecast System, version 12 (GEFSv12), a 31-yr (1989–2019) ensemble reforecast dataset has been generated at the National Centers for Environmental Prediction (NCEP). The reforecast system is based on NCEP’s Global Forecast System, version 15.1, and GEFSv12, which uses the Finite Volume 3 dynamical core. The resolution of the forecast system is ∼25 km with 64 vertical hybrid levels. The Climate Forecast System (CFS) reanalysis and GEFSv12 reanalysis serve as initial conditions for the Phase 1 (1989–99) and Phase 2 (2000–19) reforecasts, respectively. The perturbations were produced using breeding vectors and ensemble transforms with a rescaling technique for Phase 1 and ensemble Kalman filter 6-h forecasts for Phase 2. The reforecasts were initialized at 0000 (0300) UTC once per day out to 16 days with 5 ensemble members for Phase 1 (Phase 2), except on Wednesdays when the integrations were extended to 35 days with 11 members. The reforecast dataset was produced on NOAA’s Weather and Climate Operational Supercomputing System at NCEP. This study summarizes the configuration and dataset of the GEFSv12 reforecast and presents some preliminary evaluations of 500-hPa geopotential height, tropical storm track, precipitation, 2-m temperature, and MJO forecasts. The results were also compared with GEFSv10 or GEFS Subseasonal Experiment reforecasts. In addition to supporting calibration and validation for the National Water Center, NCEP Climate Prediction Center, and other National Weather Service stakeholders, this high-resolution subseasonal dataset also serves as a useful tool for the broader research community in different applications.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hong Guan, Hong.Guan@noaa.gov

Abstract

For the newly implemented Global Ensemble Forecast System, version 12 (GEFSv12), a 31-yr (1989–2019) ensemble reforecast dataset has been generated at the National Centers for Environmental Prediction (NCEP). The reforecast system is based on NCEP’s Global Forecast System, version 15.1, and GEFSv12, which uses the Finite Volume 3 dynamical core. The resolution of the forecast system is ∼25 km with 64 vertical hybrid levels. The Climate Forecast System (CFS) reanalysis and GEFSv12 reanalysis serve as initial conditions for the Phase 1 (1989–99) and Phase 2 (2000–19) reforecasts, respectively. The perturbations were produced using breeding vectors and ensemble transforms with a rescaling technique for Phase 1 and ensemble Kalman filter 6-h forecasts for Phase 2. The reforecasts were initialized at 0000 (0300) UTC once per day out to 16 days with 5 ensemble members for Phase 1 (Phase 2), except on Wednesdays when the integrations were extended to 35 days with 11 members. The reforecast dataset was produced on NOAA’s Weather and Climate Operational Supercomputing System at NCEP. This study summarizes the configuration and dataset of the GEFSv12 reforecast and presents some preliminary evaluations of 500-hPa geopotential height, tropical storm track, precipitation, 2-m temperature, and MJO forecasts. The results were also compared with GEFSv10 or GEFS Subseasonal Experiment reforecasts. In addition to supporting calibration and validation for the National Water Center, NCEP Climate Prediction Center, and other National Weather Service stakeholders, this high-resolution subseasonal dataset also serves as a useful tool for the broader research community in different applications.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hong Guan, Hong.Guan@noaa.gov
Save