• Bacmeister, J. T., M. Wehner, R. Neale, A. Gettelman, C. Hannay, P. Lauritzen, J. Caron, and J. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, https://doi.org/10.1175/JCLI-D-13-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., K. Reed, C. Hannay, P. Lawrence, S. Bates, J. Truesdale, N. Rosenbloom, and M. Levy, 2018: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146, 547560, https://doi.org/10.1007/s10584-016-1750-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., and Coauthors, 2020: Characterizing tropical cyclones in the Energy Exascale Earth System Model Version 1. J. Adv. Model. Earth Syst., 12, e2019MS002024, https://doi.org/10.1029/2019MS002024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, https://doi.org/10.1111/j.1600-0870.2007.00251.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S., and W. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G., R. Worsnop, J. Lundquist, and J. Zhang, 2017: A simple method for simulating wind profiles in the boundary layer of tropical cyclones. Bound.-Layer Meteor., 162, 475502, https://doi.org/10.1007/s10546-016-0207-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y., R. Fovell, and K. Corbosiero, 2014: Influence of cloud-radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 16441662, https://doi.org/10.1175/JAS-D-13-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y., R. Fovell, and K. Corbosiero, 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bye, J., and A. Jenkins, 2006: Drag coefficient reduction at very high wind speeds. J. Geophys. Res., 111, C03024, https://doi.org/10.1029/2005JC003114.

    • Search Google Scholar
    • Export Citation
  • Camargo, S., and A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7, 211237, https://doi.org/10.1002/wcc.373.

    • Search Google Scholar
    • Export Citation
  • Camargo, S., and Coauthors, 2020: Characteristics of model tropical cyclone climatology and the large-scale environment. J. Climate, 33, 44634487, https://doi.org/10.1175/JCLI-D-19-0500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campolongo, F., J. Cariboni, and A. Saltelli, 2007: An effective screening design for sensitivity analysis of large models. Environ. Modell. Software, 22, 15091518, https://doi.org/10.1016/j.envsoft.2006.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Linn, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, https://doi.org/10.1029/2011GL047629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Linn, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., D. Lucas, J. Tannahill, X. Garaizar, and R. Klein, 2013: Efficient screening of climate model sensitivity to a large number of perturbed input parameters. J. Adv. Model. Earth Syst., 5, 598610, https://doi.org/10.1002/jame.20040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2018: Resolving tropical cyclone intensity in models. Geophys. Res. Lett., 45, 20822087, https://doi.org/10.1002/2017GL076966.

  • Donelan, M., B. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: The air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R., Y. Bu, K. Corbosiero, W. Tung, Y. Cao, H. Kuo, L. Hsu, and H. Su, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., Vol. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0006.1.

    • Search Google Scholar
    • Export Citation
  • French, J., W. Drennan, J. Zhang, and P. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, https://doi.org/10.1175/JAS3887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J., V. Larson, and W. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S., F. Marks Jr., J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S., A. Hazelton, and J. A. Zhang, 2021: Improving hurricane boundary layer parameterization scheme based on observations. Earth Space Sci., 8, e2020EA001422, https://doi.org/10.1029/2020EA001422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2014: A sensitivity analysis of cloud properties to CLUBB parameters in the Single-Column Community Atmosphere Model (SCAM5). J. Adv. Model. Earth Syst., 6, 829858, https://doi.org/10.1002/2014MS000315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., B. M. Griffin, S. Domke, and V. E. Larson, 2021: A parameterization of turbulent dissipation and pressure damping time scales in stably stratified inversions, and its effects on low clouds in global simulations. J. Adv. Model. Earth Syst., 13, e2020MS002278, https://doi.org/10.1029/2020MS002278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., and M. Zhao, 2008: Horizontally homogeneous rotating radiative-convective equilibria at GCM resolution. J. Atmos. Sci., 65, 20032013, https://doi.org/10.1175/2007JAS2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, J., and W. Usher, 2017: SALib: An open-source Python library for sensitivity analysis. J. Open Source Software, 2, 97, https://doi.org/10.21105/joss.00097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, J., J. Kollat, P. Reed, and T. Wagener, 2013: Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol. Earth Syst. Sci., 17, 28932903, https://doi.org/10.5194/hess-17-2893-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Linear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., J. Schwendike, and H. Ramsay, 2016: Why is the tropical cyclone boundary layer not “well mixed”? J. Atmos. Sci., 73, 957973, https://doi.org/10.1175/JAS-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, https://doi.org/10.1002/2013MS000253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V., 2020: CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere. J. Adv. Model. Earth Syst., https://arxiv.org/abs/1711.03675.

    • Search Google Scholar
    • Export Citation
  • Larson, V., S. Domke, and B. Griffin, 2019: Momentum transport in shallow cumulus clouds and its parameterization by higher-order closure. J. Adv. Model. Earth Syst., 11, 34193442, https://doi.org/10.1029/2019MS001743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C., S. Camargo, F. Vitart, A. Sobel, J. Camp, S. Wang, M. Tippett, and Q. Yang, 2020: Subseasonal predictions of tropical cyclone occurrence and ACE in the S2S dataset. Mon. Wea. Rev., 35, 921938, https://doi.org/10.1175/WAF-D-19-0217.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2020: Vertical eddy diffusivity parameterization based on a large eddy simulation and its impact on prediction of hurricane landfall. Geophys. Res. Lett., 48, e2020GL090703, https://doi.org/10.1029/2020GL090703.

    • Search Google Scholar
    • Export Citation
  • Makin, V., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176, https://doi.org/10.1007/s10546-004-3647-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and L. Enger, 2008: On the use of shear-dependent turbulent length-scales. Quart. J. Roy. Meteor. Soc., 134, 539540, https://doi.org/10.1002/qj.218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I., I. Ginis, and T. Hara, 2008: Impact of reduced drag coefficient on ocean wave modeling under hurricane conditions. Mon. Wea. Rev., 136, 12171223, https://doi.org/10.1175/2007MWR2131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., and Coauthors, 2020: Azimuthally averaged wind and thermodynamic structures of tropical cyclones in global climate models and their sensitivity to horizontal resolution. J. Climate, 33, 15751595, https://doi.org/10.1175/JCLI-D-19-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales, A., D. Posselt, H. Morrison, and F. He, 2019: Assessing the influence of microphysical and environmental parameter perturbations on orographic precipitation. J. Atmos. Sci., 76, 13731395, https://doi.org/10.1175/JAS-D-18-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, M., 1991: Factorial sampling plans for preliminary computational experiments. Technometrics, 33, 161174, https://doi.org/10.1080/00401706.1991.10484804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., G. Vecchi, S. Underwood, and T. Delworth, 2015: Simulation and prediction of category-4 and -5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, https://doi.org/10.1175/JCLI-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., G. Villarini, G. Vecchi, W. Zhang, and R. Gudgel, 2016: Statistical-dynamical seasonal forecast of North Atlantic and U.S. landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. Mon. Wea. Rev., 144, 21012123, https://doi.org/10.1175/MWR-D-15-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D., D. Stern, and J. Zhang, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D., J. Zhang, and D. Stern, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. Montgomery, J. McWilliams, and R. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M., P. Vickery, and T. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589662.

    • Search Google Scholar
    • Export Citation
  • Reed, K., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, https://doi.org/10.1029/2011MS000099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K., and D. Chavas, 2015: Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 7, 19381955, https://doi.org/10.1002/2015MS000519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D., C. Wainwright, D. Stern, G. Bryan, and D. Chavas, 2021: Potential low bias in high-wind drag coefficient inferred from dropsonde data in hurricanes. J. Atmos. Sci., 78, 23392352, https://doi.org/10.1175/JAS-D-20-0390.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, M., and Coauthors, 2020a: Impact of model resolution on tropical cyclone simulation using HighResMIP-PRIMAVERA multimodel ensemble. J. Climate, 33, 25572583, https://doi.org/10.1175/JCLI-D-19-0639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M., and Coauthors, 2020b: Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble. Geophys. Res. Lett., 47, e2020GL088662, https://doi.org/10.1029/2020GL088662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., and C. Bretherton, 2014: Large-scale character of an atmosphere in rotating radiative-convective equilibrium. J. Adv. Model. Earth Syst., 6, 616629, https://doi.org/10.1002/2014MS000342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and G. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., T. Fukui, M. Kajino, M. Horiguchi, H. Hashiguchi, and S. Fukao, 2012: Eddy diffusivities for momentum and heat in the upper troposphere and lower stratosphere measured by MU radar and RASS, and a comparison of turbulence model predictions. J. Atmos. Sci., 69, 323337, https://doi.org/10.1175/JAS-D-11-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. Leroy, and M. Wheeler, 2010: A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 138, 36713682, https://doi.org/10.1175/2010MWR3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., and Coauthors, 2015: Hurricanes and climate: The U.S. CLIVAR Working Group on Hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, https://doi.org/10.1175/BAMS-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmosphere Model (CAM5.1). J. Adv. Model. Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Wing, A., K. Reed, M. Satoh, B. Stevens, S. Bony, and T. Ohno, 2018: Radiative-convective equilibrium model intercomparison project. Geosci. Model Dev., 11, 793813, https://doi.org/10.5194/gmd-11-793-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A., and Coauthors, 2019: Moist static energy budget analysis of tropical cyclone intensification in high-resolution climate models. J. Climate, 32, 60716095, https://doi.org/10.1175/JCLI-D-18-0599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C., 2016: Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J. Climate, 29, 85898610, https://doi.org/10.1175/JCLI-D-16-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, https://doi.org/10.1002/2014MS000352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C., and C. Jablonowski, 2015: Experimental tropical cyclone forecasts using a variable-resolution global model. Mon. Wea. Rev., 143, 40124037, https://doi.org/10.1175/MWR-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C., and P. Ullrich, 2017: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophys. Res. Lett., 44, 11411149, https://doi.org/10.1002/2016GL071606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C., C. Jablonowski, and M. Taylor, 2014a: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, https://doi.org/10.1175/MWR-D-13-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C., M. Levy, and C. Jablonowski, 2014b: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 54815503, https://doi.org/10.1175/JCLI-D-14-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and X. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evoluation of landfalling hurricanes. J. Atmos. Sci., 74, 18791905, https://doi.org/10.1175/JAS-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and W. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, https://doi.org/10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., F. Marks, M. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016: Improved simulation of tropical cyclone responses to ENSO in the western North Pacific in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 29, 13911415, https://doi.org/10.1175/JCLI-D-15-0475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., I. Held, and S. Garner, 2014: Parameter study of tropical cyclones in rotating radiative-equilibrium with column physics and resolution of a 25-km GCM. J. Atmos. Sci., 71, 10581069, https://doi.org/10.1175/JAS-D-13-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 502 372 9
Full Text Views 161 127 17
PDF Downloads 172 133 16

Assessing the Sensitivity of the Tropical Cyclone Boundary Layer to the Parameterization of Momentum Flux in the Community Earth System Model

Kyle M. NardiaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kyle M. Nardi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1831-2198
,
Colin M. ZarzyckiaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Colin M. Zarzycki in
Current site
Google Scholar
PubMed
Close
,
Vincent E. LarsonbDepartment of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
cPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Vincent E. Larson in
Current site
Google Scholar
PubMed
Close
, and
George H. BryandNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent studies have demonstrated that high-resolution (∼25 km) Earth System Models (ESMs) have the potential to skillfully predict tropical cyclone (TC) occurrence and intensity. However, biases in ESM TCs still exist, largely due to the need to parameterize processes such as boundary layer (PBL) turbulence. Building on past studies, we hypothesize that the depiction of the TC PBL in ESMs is sensitive to the configuration of the PBL parameterization scheme, and that the targeted perturbation of tunable parameters can reduce biases. The Morris one-at-a-time (MOAT) method is implemented to assess the sensitivity of the TC PBL to tunable parameters in the PBL scheme in an idealized configuration of the Community Atmosphere Model, version 6 (CAM6). The MOAT method objectively identifies several parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBB) scheme that appreciably influence the structure of the TC PBL. We then perturb the parameters identified by the MOAT method within a suite of CAM6 ensemble simulations and find a reduction in model biases compared to observations and a high-resolution, cloud-resolving model. We demonstrate that the high-sensitivity parameters are tied to PBL processes that reduce turbulent mixing and effective eddy diffusivity, and that in CAM6 these parameters alter the TC PBL in a manner consistent with past modeling studies. In this way, we provide an initial identification of process-based input parameters that, when altered, have the potential to improve TC predictions by ESMs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle M. Nardi, kmn182@psu.edu

Abstract

Recent studies have demonstrated that high-resolution (∼25 km) Earth System Models (ESMs) have the potential to skillfully predict tropical cyclone (TC) occurrence and intensity. However, biases in ESM TCs still exist, largely due to the need to parameterize processes such as boundary layer (PBL) turbulence. Building on past studies, we hypothesize that the depiction of the TC PBL in ESMs is sensitive to the configuration of the PBL parameterization scheme, and that the targeted perturbation of tunable parameters can reduce biases. The Morris one-at-a-time (MOAT) method is implemented to assess the sensitivity of the TC PBL to tunable parameters in the PBL scheme in an idealized configuration of the Community Atmosphere Model, version 6 (CAM6). The MOAT method objectively identifies several parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBB) scheme that appreciably influence the structure of the TC PBL. We then perturb the parameters identified by the MOAT method within a suite of CAM6 ensemble simulations and find a reduction in model biases compared to observations and a high-resolution, cloud-resolving model. We demonstrate that the high-sensitivity parameters are tied to PBL processes that reduce turbulent mixing and effective eddy diffusivity, and that in CAM6 these parameters alter the TC PBL in a manner consistent with past modeling studies. In this way, we provide an initial identification of process-based input parameters that, when altered, have the potential to improve TC predictions by ESMs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle M. Nardi, kmn182@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 55.4 MB)
Save