• Arthur, R. S., K. A. Lundquist, D. J. Wiersema, J. Bao, and F. K. Chow, 2020: Evaluating implementations of the immersed boundary method in the Weather Research and Forecasting Model. Mon. Wea. Rev., 148, 20872109, https://doi.org/10.1175/MWR-D-19-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., F. K. Chow, and K. A. Lundquist, 2018: Large-eddy simulation over complex terrain using an improved immersed boundary method in the Weather Research and Forecasting Model. Mon. Wea. Rev., 146, 27812797, https://doi.org/10.1175/MWR-D-18-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2014: A length scale defining partially-resolved boundary-layer turbulence simulations. Bound.-Layer Meteor., 151, 3955, https://doi.org/10.1007/s10546-013-9881-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cécé, R., D. Bernard, J. Brioude, and N. Zahibo, 2016: Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields. Atmos. Environ., 139, 98112, https://doi.org/10.1016/j.atmosenv.2016.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, R. Rasmussen, and D. Breed, 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 22642286, https://doi.org/10.1175/JAMC-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conry, P., A. Sharma, M. J. Potosnak, L. S. Leo, E. Bensman, J. J. Hellmann, and H. J. S. Fernando, 2015: Chicago’s heat island and climate change: Bridging the scales via dynamical downscaling. J. Appl. Meteor. Climatol., 54, 14301448, https://doi.org/10.1175/JAMC-D-14-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniels, M. H., K. A. Lundquist, J. D. Mirocha, D. J. Wiersema, and F. K. Chow, 2016: A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 37253747, https://doi.org/10.1175/MWR-D-16-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., P. G. Duynkerke, and H. J. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, https://doi.org/10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimitrova, R., Z. Silver, T. Zsedrovits, C. M. Hocut, L. S. Leo, S. Di Sabatino, and H. J. S. Fernando, 2016: Assessment of planetary boundary-layer schemes in the weather research and forecasting mesoscale model using MATERHORN field data. Bound.-Layer Meteor., 159, 589609, https://doi.org/10.1007/s10546-015-0095-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donateo, A., D. Cava, and D. Contini, 2017: A case study of the performance of different detrending methods in turbulent-flux estimation. Bound.-Layer Meteor., 164, 1937, https://doi.org/10.1007/s10546-017-0243-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doubrawa, P., and D. Muñoz-Esparza, 2020: Simulating real atmospheric boundary layers at gray-zone resolutions: How do currently available turbulence parameterizations perform? Atmosphere, 11, 345, https://doi.org/10.3390/atmos11040345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., R. J. Beare, S. Osborne, and A. P. Lock, 2016: Grey zone simulations of the morning convective boundary layer development. J. Geophys. Res. Atmos., 121, 47694782, https://doi.org/10.1002/2016JD024860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., R. S. Plant, and M.-J. Bopape, 2018: Simulation of an evolving convective boundary layer using a scale-dependent dynamic Smagorinsky model at near-gray-zone resolutions. J. Appl. Meteor. Climatol., 57, 21972214, https://doi.org/10.1175/JAMC-D-17-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., D. Zajic, S. Di Sabatino, R. Dimitrova, B. Hedquist, and A. Dallman, 2010: Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys. Fluids, 22, 051301, https://doi.org/10.1063/1.3407662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and Coauthors, 2019: The Perdigão: Peering into microscale details of mountain winds. Bull. Amer. Meteor. Soc., 100, 799819, https://doi.org/10.1175/BAMS-D-17-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiori, E., A. Parodi, and F. Siccardi, 2010: Turbulence closure parameterization and grid spacing effects in simulated supercell storms. J. Atmos. Sci., 67, 38703890, https://doi.org/10.1175/2010JAS3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamo, M., 1996: Thickness of the dry convection and large-scale subsidence above deserts. Bound.-Layer Meteor., 79, 265278, https://doi.org/10.1007/BF00119441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giani, P., F. Tagle, M. G. Genton, S. Castruccio, and P. Crippa, 2020: Closing the gap between wind energy targets and implementation for emerging countries. Appl. Energy, 269, 115085, https://doi.org/10.1016/j.apenergy.2020.115085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2019: On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Amer. Meteor. Soc., 100, 25332550, https://doi.org/10.1175/BAMS-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., 2019: Grey-zone turbulence in the neutral atmospheric boundary layer. Bound.-Layer Meteor., 170, 191204, https://doi.org/10.1007/s10546-018-0394-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, https://doi.org/10.1175/JAS-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., and Coauthors, 2020: The atmospheric boundary layer and the “gray zone” of turbulence: A critical review. J. Geophys. Res. Atmos., 125, e2019JD030317, https://doi.org/10.1029/2019JD030317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, C. Lac, and T. Nagel, 2021: A theoretical analysis of mixing length for atmospheric models from micro to large scales. Front. Earth Sci., 8, 582056, https://doi.org/10.3389/feart.2020.582056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of the Mellor–Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, https://doi.org/10.1007/s10546-015-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Joe, D. K., H. Zhang, S. P. DeNero, H.-H. Lee, S.-H. Chen, B. C. McDonald, R. A. Harley, and M. J. Kleeman, 2014: Implementation of a high-resolution Source-Oriented WRF/Chem model at the Port of Oakland. Atmos. Environ., 82, 351363, https://doi.org/10.1016/j.atmosenv.2013.09.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2019: Multicase assessment of the impacts of horizontal and vertical grid spacing, and turbulence closure model, on subkilometer-scale simulations of atmospheric bores during PECAN. Mon. Wea. Rev., 147, 15331555, https://doi.org/10.1175/MWR-D-18-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kealy, J. C., G. A. Efstathiou, and R. J. Beare, 2019: The onset of resolved boundary-layer turbulence at grey-zone resolutions. Bound.-Layer Meteor., 171, 3152, https://doi.org/10.1007/s10546-018-0420-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151182, https://doi.org/10.1017/S0022112096004697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., and J. Teixeira, 2018: A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer. J. Atmos. Sci., 75, 675690, https://doi.org/10.1175/JAS-D-16-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsén, X. G., S. E. Larsen, and E. L. Petersen, 2016: Full-scale spectrum of boundary-layer winds. Bound.-Layer Meteor., 159, 349371, https://doi.org/10.1007/s10546-016-0129-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 3054, https://doi.org/10.1175/MWR-D-12-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonard, A., 1975: Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, Vol. 18, Academic Press, 237248.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. NCAR manuscript 281, NCAR, 24 pp.

  • Liu, Y., Y. Liu, D. Muñoz-Esparza, F. Hu, C. Yan, and S. Miao, 2020: Simulation of flow fields in complex terrain with WRF-LES: Sensitivity assessment of different PBL treatments. J. Appl. Meteor. Climatol., 59, 14811501, https://doi.org/10.1175/JAMC-D-19-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the Weather Research and Forecasting Model. Mon. Wea. Rev., 138, 796817, https://doi.org/10.1175/2009MWR2990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzaro, L. J., D. Muñoz‐Esparza, J. K. Lundquist, and R. R. Linn, 2017: Nested mesoscale‐to‐LES modeling of the atmospheric boundary layer in the presence of under‐resolved convective structures. J. Adv. Model. Earth Syst., 9, 17951810, https://doi.org/10.1002/2017MS000912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF Model. Mon. Wea. Rev., 138, 42124228, https://doi.org/10.1175/2010MWR3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., and Coauthors, 2018: Large-eddy simulation sensitivities to variations of configuration and forcing parameters in canonical boundary-layer flows for wind energy applications. Wind Energy Sci., 3, 589613, https://doi.org/10.5194/wes-3-589-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, https://doi.org/10.1007/s10546-014-9956-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz‐Esparza, D., J. K. Lundquist, J. A. Sauer, B. Kosović, and R. R. Linn, 2017: Coupled mesoscale‐LES modeling of a diurnal cycle during the CWEX‐13 field campaign: From weather to boundary‐layer eddies. J. Adv. Model. Earth Syst., 9, 15721594, https://doi.org/10.1002/2017MS000960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, J. B., J. S. Kenyon, W. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW. NOAA Tech. Memo. OAR GSD-61, NOAA, 42 pp., https://doi.org/10.25923/n9wm-be49.

    • Search Google Scholar
    • Export Citation
  • Poll, S., P. Shrestha, and C. Simmer, 2017: Modelling convectively induced secondary circulations in the terra incognita with TerrSysMP. Quart. J. Roy. Meteor. Soc., 143, 23522361, https://doi.org/10.1002/qj.3088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, R. K., L. K. Berg, B. Kosović, J. D. Mirocha, M. S. Pekour, and W. J. Shaw, 2017: Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain. Bound.-Layer Meteor., 163, 6989, https://doi.org/10.1007/s10546-016-0217-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, R. K., L. K. Berg, B. Kosović, S. E. Haupt, J. D. Mirocha, B. L. Ennis, and C. Draxl, 2019: Evaluation of the impact of horizontal grid spacing in terra incognita on coupled mesoscale–microscale simulations using the WRF framework. Mon. Wea. Rev., 147, 10071027, https://doi.org/10.1175/MWR-D-18-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., H. J. S. Fernando, A. F. Hamlet, J. J. Hellmann, M. Barlage, and F. Chen, 2017: Urban meteorological modeling using WRF: A sensitivity study. Int. J. Climatol., 37, 18851900, https://doi.org/10.1002/joc.4819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and J. Dudhia, 2016: Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: Turbulence statistics in the dry convective boundary layer. Mon. Wea. Rev., 144, 11611177, https://doi.org/10.1175/MWR-D-15-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, J. S., B. Zhou, J. D. Mirocha, and F. K. Chow, 2019: Explicit filtering and reconstruction to reduce grid dependence in convective boundary layer simulations using WRF-LES. Mon. Wea. Rev., 147, 18051821, https://doi.org/10.1175/MWR-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, https://doi.org/10.1175/JAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeor., 13, 14211441, https://doi.org/10.1175/JHM-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J., T. Gerz, N. Wildmann, and K. Gramitzky, 2019: Long-term simulation of the boundary layer flow over the double-ridge site during the Perdigão 2017 field campaign. Atmos. Chem. Phys., 19, 11291146, https://doi.org/10.5194/acp-19-1129-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. G., and J. M. Hacker, 1992: The composite shape and structure of coherent eddies in the convective boundary layer. Bound.-Layer Meteor., 61, 213245, https://doi.org/10.1007/BF02042933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “Terra Incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., Y. Wang, and M. Wang, 2018: The performance of a scale-aware nonlocal PBL scheme for the subkilometer simulation of a deep CBL over the Taklimakan desert. Adv. Meteor., 2018, 8759594, https://doi.org/10.1155/2018/8759594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J.-W. Bao, B. Chen, and E. D. Grell, 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW Model. Mon. Wea. Rev., 146, 20232045, https://doi.org/10.1175/MWR-D-17-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, https://doi.org/10.1175/JAS-D-13-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 33
Full Text Views 22 22 22
PDF Downloads 25 25 25

Modeling the Convective Boundary Layer in the Terra Incognita: Evaluation of Different Strategies with Real-Case Simulations

View More View Less
  • 1 aDepartment of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
  • | 2 bStatistics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Restricted access

Abstract

Modeling atmospheric turbulence in the convective boundary layer is challenging at kilometer and subkilometer resolutions, as the horizontal grid spacing approaches the size of the most energetic turbulent eddies. In this range of resolutions, termed terra incognita or gray zone, partially resolved convective structures are grid dependent and neither traditional 1D mesoscale parameterizations nor 3D large-eddy simulations closures are theoretically appropriate. Leveraging on a new set of one-way nested, full-physics multiscale numerical experiments, we quantify the magnitude of the errors introduced at gray zone resolutions in a real-case application and we provide new perspectives on recently proposed modeling approaches. The new set of experiments is forced by real-time-varying boundary conditions, spans a wide range of scales, and includes traditional 1D schemes, 3D closures, scale-aware parameterizations, and strategies to suppress resolved convection at gray zone resolutions. The study area is Riyadh (Saudi Arabia), where deep CBLs develop owing to strong convective conditions. Detailed analyses of our experiments, including validation with radiosonde data, calculations of spectral features, and partitioning of turbulent fluxes between resolved and subgrid scales, show that (i) grid-dependent convective structures entail minor impacts on the first-order characteristics of the fully developed boundary layer due to some degree of implicit scale awareness of 1D parameterizations and (ii) 3D closures and scale-aware schemes outperform traditional 1D schemes especially in the surface layer, among other findings. The new suite of experiments provides a benchmark of real simulations that can be extended to assess how new turbulence closures perform at gray zone resolutions.

Significance Statement

As recent advances in high-performance computing are leading to a new era in numerical simulations, regional atmospheric models can now increase their resolution to the widely unexplored kilometer and subkilometer range. While increasing the resolution of atmospheric models is desirable to (i) have more realistic weather and air quality predictions and (ii) better represent boundary conditions for microscale models, kilometer and subkilometer grid spacings pose some theoretical challenges that need to be addressed by the atmospheric modeling community. In this work we run a set of numerical experiments for a real case study that aim to offer new perspectives on recently developed modeling strategies and identify the most promising directions that should be investigated by follow-up studies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paolo Giani, pgiani@nd.edu

Abstract

Modeling atmospheric turbulence in the convective boundary layer is challenging at kilometer and subkilometer resolutions, as the horizontal grid spacing approaches the size of the most energetic turbulent eddies. In this range of resolutions, termed terra incognita or gray zone, partially resolved convective structures are grid dependent and neither traditional 1D mesoscale parameterizations nor 3D large-eddy simulations closures are theoretically appropriate. Leveraging on a new set of one-way nested, full-physics multiscale numerical experiments, we quantify the magnitude of the errors introduced at gray zone resolutions in a real-case application and we provide new perspectives on recently proposed modeling approaches. The new set of experiments is forced by real-time-varying boundary conditions, spans a wide range of scales, and includes traditional 1D schemes, 3D closures, scale-aware parameterizations, and strategies to suppress resolved convection at gray zone resolutions. The study area is Riyadh (Saudi Arabia), where deep CBLs develop owing to strong convective conditions. Detailed analyses of our experiments, including validation with radiosonde data, calculations of spectral features, and partitioning of turbulent fluxes between resolved and subgrid scales, show that (i) grid-dependent convective structures entail minor impacts on the first-order characteristics of the fully developed boundary layer due to some degree of implicit scale awareness of 1D parameterizations and (ii) 3D closures and scale-aware schemes outperform traditional 1D schemes especially in the surface layer, among other findings. The new suite of experiments provides a benchmark of real simulations that can be extended to assess how new turbulence closures perform at gray zone resolutions.

Significance Statement

As recent advances in high-performance computing are leading to a new era in numerical simulations, regional atmospheric models can now increase their resolution to the widely unexplored kilometer and subkilometer range. While increasing the resolution of atmospheric models is desirable to (i) have more realistic weather and air quality predictions and (ii) better represent boundary conditions for microscale models, kilometer and subkilometer grid spacings pose some theoretical challenges that need to be addressed by the atmospheric modeling community. In this work we run a set of numerical experiments for a real case study that aim to offer new perspectives on recently developed modeling strategies and identify the most promising directions that should be investigated by follow-up studies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paolo Giani, pgiani@nd.edu

Supplementary Materials

    • Supplemental Materials (PDF 65.8 MB)
Save