• Ades, M., and P. J. Van Leeuwen, 2015: The effect of the equivalent-weights particle filter on dynamical balance in a primitive equation model. Mon. Wea. Rev., 143, 581596, https://doi.org/10.1175/MWR-D-14-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, A., A. Moosavi, and A. Sandu, 2018: Cluster sampling filters for non-Gaussian data assimilation. Atmosphere, 9, 213, https://doi.org/10.3390/atmos9060213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A., F. Zhang, and J. W. Nielsen‐Gammon, 2006: Ensemble‐based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, https://doi.org/10.1029/2006GL026186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amezcua, J., and P. J. Van Leeuwen, 2014: Gaussian anamorphosis in the analysis step of the EnKF: A joint state-variable/observation approach. Tellus, 66A, 23493, https://doi.org/10.3402/tellusa.v66.23493.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Ensemble Kalman filters for large geophysical applications. IEEE Control Syst. Mag., 29, 6682, https://doi.org/10.1109/MCS.2009.932222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 41864198, https://doi.org/10.1175/2010MWR3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2020: A marginal adjustment rank histogram filter for non-Gaussian ensemble data assimilation. Mon. Wea. Rev., 148, 33613378, https://doi.org/10.1175/MWR-D-19-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attia, A., A. Moosavi, and A. Sandu, 2018: Cluster sampling filters for non-Gaussian data assimilation. Atmosphere, 9, 213, https://doi.org/10.3390/atmos9060213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beezley, J. D., and J. Mandel, 2008: Morphing ensemble Kalman filters. Tellus, 60A, 131140, https://doi.org/10.1111/j.1600-0870.2007.00275.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., 2016: The GIGG‐EnKF: Ensemble Kalman filtering for highly skewed non‐negative uncertainty distributions. Quart. J. Roy. Meteor. Soc., 142, 13951412, https://doi.org/10.1002/qj.2742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Manjundar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocquet, M., and P. Sakov, 2012: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Processes Geophys., 19, 383399, https://doi.org/10.5194/npg-19-383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breitenberger, E., 1963: Analogues of the normal distribution on the circle and the sphere. Biometrika, 50, 8188, https://doi.org/10.1093/biomet/50.1-2.81.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, M.-Y., J. L. Anderson, and X. Chen, 2020: An efficient bi-Gaussian ensemble Kalman filter for satellite infrared radiance data assimilation. Mon. Wea. Rev., 148, 50875104, https://doi.org/10.1175/MWR-D-20-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M.-H., and J. G. Ibrahim, 2003: Conjugate priors for generalized linear models. Stat. Sin., 13, 461476.

  • Damien, P., and S. G. Walker, 2001: Sampling truncated normal, beta, and gamma densities. J. Comput. Graph. Stat., 10, 206215, https://doi.org/10.1198/10618600152627906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dovera, L., and E. Della Rossa, 2011: Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci., 15, 307323, https://doi.org/10.1007/s10596-010-9205-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubey, S. D., 1970: Compound gamma, beta and F distributions. Metrika, 16, 2731, https://doi.org/10.1007/BF02613934.

  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, D., 1997: A compendium of conjugate priors. Cornell University, 47 pp., https://web.archive.org/web/20090529203101/http://www.people.cornell.edu/pages/df36/CONJINTRnew%20TEX.pdf.

    • Search Google Scholar
    • Export Citation
  • Hamill, T., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., 2011: Ensemble state estimation for nonlinear systems using polynomial expansions in the innovation. Mon. Wea. Rev., 139, 35713588, https://doi.org/10.1175/2011MWR3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., 2012: Accounting for skewness in ensemble data assimilation. Mon. Wea. Rev., 140, 23462358, https://doi.org/10.1175/MWR-D-11-00198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and W. F. Campbell, 2013: Square root and perturbed observation ensemble generation techniques in Kalman and quadratic ensemble filtering algorithms. Mon. Wea. Rev., 141, 25612573, https://doi.org/10.1175/MWR-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., D. McLaughlin, S. E. Cohn, and M. Verlaan, 2014: Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms. Mon. Wea. Rev., 142, 755773, https://doi.org/10.1175/MWR-D-13-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME, 82, 3545, https://doi.org/10.1115/1.3662552.

  • Kalman, R. E., and R. S. Bucy, 1961: New results in linear filtering and prediction theory. Trans. ASME, 83, 95108, https://doi.org/10.1115/1.3658902.

    • Search Google Scholar
    • Export Citation
  • Keelin, T. W., and B. W. Powley, 2011: Quantile-parameterized distributions. Decis. Anal., 8, 206219, https://doi.org/10.1287/deca.1110.0213.

  • Klumpp, V., and U. D. Hanebeck, 2009: Bayesian estimation with uncertain parameters of probability density functions. 12th Int. Conf. on Information Fusion’09, Seattle, WA, IEEE, 17591766.

  • Lei, J., P. Bickel, and C. Snyder, 2010: Comparison of ensemble Kalman filters under non-Gaussianity. Mon. Wea. Rev., 138, 12931306, https://doi.org/10.1175/2009MWR3133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leone, F. C., R. B. Nottingham, and L. S. Nelson, 1961: The folded normal distribution. Technometrics, 3, 543550, https://doi.org/10.1080/00401706.1961.10489974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., B. Ait-El-Fquih, and I. Hoteit, 2016a: Efficient kernel-based ensemble Gaussian mixture filtering. Mon. Wea. Rev., 144, 781800, https://doi.org/10.1175/MWR-D-14-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., M. El Gharamti, and I. Hoteit, 2016b: Assessing clustering strategies for Gaussian mixture filtering in a subsurface contaminant model. J. Hydrol., 535, 121, https://doi.org/10.1016/j.jhydrol.2016.01.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandel, J., and J. D. Beezley, 2009: An ensemble Kalman-particle predictor-corrector filter for non-Gaussian data assimilation. Computational Science, ICCS 2009, G. Allen et al., Eds., Lecture Notes in Computer Science, Vol. 5545, Springer, 470478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandel, J., L. Cobb, and J. D. Beezley, 2011: On the convergence of the ensemble Kalman filter. Appl. Math, 56, 533541, https://doi.org/10.1007/s10492-011-0031-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metref, S., E. Cosme, C. Snyder, and P. Brasseur, 2014: A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation. Nonlinear Processes Geophys., 21, 869885, https://doi.org/10.5194/npg-21-869-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nino-Ruiz, E. D., H. Cheng, and R. Beltran, 2018: A robust non-Gaussian data assimilation method for highly non-linear Models. Atmosphere, 9, 126, https://doi.org/10.3390/atmos9040126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Hagan, A., and T. Leonard, 1976: Bayes estimation subject to uncertainty about parameter constraints. Biometrika, 63, 201203, https://doi.org/10.1093/biomet/63.1.201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, https://doi.org/10.3402/tellusa.v56i5.14462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and C. H. Bishop, 2018: Nonlinear data assimilation for clouds and precipitation using a gamma inverse‐gamma ensemble filter. Quart. J. Roy. Meteor. Soc., 144, 23312349, https://doi.org/10.1002/qj.3374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev., 144, 5976, https://doi.org/10.1175/MWR-D-15-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raeder, K., J. L. Anderson, N. Collins, T. Hoar, J. E. Kay, P. H. Lauritzen, and R. Pincus, 2012: DART/CAM: An ensemble data assimilation system for CESM atmospheric models. J. Climate, 25, 63046317, https://doi.org/10.1175/JCLI-D-11-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roh, S., M. G. Genton, M. Jun, I. Szunyogh, and I. Hoteit, 2013: Observation quality control with a robust ensemble Kalman filter. Mon. Wea. Rev., 141, 44144428, https://doi.org/10.1175/MWR-D-13-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruckstuhl, Y. M., and T. Janjić, 2018: Parameter and state estimation with ensemble Kalman filter based algorithms for convective‐scale applications. Quart. J. Roy. Meteor. Soc., 144, 826841, https://doi.org/10.1002/qj.3257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, J. J., M. Pulido, and T. Miyoshi, 2013: Estimating model parameters with ensemble‐based data assimilation: A review. J. Meteor. Soc. Japan, 91, 7999, https://doi.org/10.2151/jmsj.2013-201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for strongly nonlinear systems. Mon. Wea. Rev., 140, 19882004, https://doi.org/10.1175/MWR-D-11-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santitissadeekorn, N., M. B. Short, and D. J. B. Lloyd, 2018: Sequential data assimilation for 1D self-exciting processes with application to urban crime data. Comput. Stat. Data Anal., 128, 163183, https://doi.org/10.1016/j.csda.2018.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöniger, A., W. Nowak, and H.-J. Hendricks Franssen, 2012: Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography. Water Resour. Res., 48, W04502, https://doi.org/10.1029/2011WR010462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman & Hall, 175 pp.

  • Simon, E., and L. Bertino, 2009: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean Sci., 5, 495510, https://doi.org/10.5194/os-5-495-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, M. A., 1974: EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc., 69, 730737, https://doi.org/10.1080/01621459.1974.10480196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stordal, A. S., H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. B. Valles, 2011: Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter. Comput. Geosci., 15, 293305, https://doi.org/10.1007/s10596-010-9207-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroud, J. R., M. Katzfuss, and C. K. Wikle, 2018: A Bayesian adaptive ensemble Kalman filter for sequential state and parameter estimation. Mon. Wea. Rev., 146, 373386, https://doi.org/10.1175/MWR-D-16-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, A. Y., A. P. Morris, and S. Mohanty, 2009: Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques. Water Resour. Res., 45, W07424, https://doi.org/10.1029/2008WR007443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke, 2008: A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus, 60, 113130, https://doi.org/10.1111/j.1600-0870.2007.00274.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tavolato, C., and L. Isaksen, 2015: On the use of a Huber norm for observation quality control in the ECMWF 4D‐Var. Quart. J. Roy. Meteor. Soc., 141, 15141527, https://doi.org/10.1002/qj.2440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, https://doi.org/10.1175/2009MWR2835.1.

  • Van Leeuwen, P. J., H. R. Künsch, L. Nerger, R. Potthast, and S. Reich, 2019: Particle filters for high‐dimensional geoscience applications: A review. Quart. J. Roy. Meteor. Soc., 145, 23352365, https://doi.org/10.1002/qj.3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetra-Carvalho, S., P. J. van Leeuwen, L. Nerger, A. Barth, J. Umer Altaf, P. Brasseur, P. Kirchgessner, and J.-M. Beckers, 2018: State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus, 70A, 143, https://doi.org/10.1080/16000870.2018.1445364.

    • Search Google Scholar
    • Export Citation
  • Ward, J. A., A. J. Evans, and N. S. Malleson, 2016: Dynamic calibration of agent-based models using data assimilation. Roy. Soc. Open Sci., 3, 150703, https://doi.org/10.1098/rsos.150703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhen, Y., and F. Zhang, 2014: A probabilistic approach to adaptive covariance localization for serial ensemble square root filters. Mon. Wea. Rev., 142, 44994518, https://doi.org/10.1175/MWR-D-13-00390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 17101726, https://doi.org/10.1175/MWR2946.1.

All Time Past Year Past 30 Days
Abstract Views 488 484 46
Full Text Views 155 151 16
PDF Downloads 168 166 18

A Quantile-Conserving Ensemble Filter Framework. Part I: Updating an Observed Variable

Jeffrey L. AndersonaNCAR/CISL/TDD/DAReS, Boulder, Colorado

Search for other papers by Jeffrey L. Anderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A general framework for deterministic univariate ensemble filtering is presented. The framework fits a continuous prior probability density function (PDF) to the prior ensemble. A functional representation for the observation likelihood is combined with the prior PDF to get a continuous analysis (posterior) PDF. Cumulative distribution functions for the prior and analysis are also required. The key innovation is that an analysis ensemble is computed so that the quantile of each ensemble member is the same as its prior quantile. Many choices for the prior PDF family and the likelihood function are described. A choice of normal prior with normal likelihood is equivalent to the ensemble adjustment Kalman filter. Some other choices for the prior include gamma, inverse gamma, beta, beta prime, lognormal, and exponential distributions. Both prior distributions and likelihoods can be defined over a set of intervals giving additional flexibility that can be used to implement methods like a Huber likelihood for observations with occasional outliers. Priors and likelihoods can also be defined as sums of distributions allowing choices like bivariate normals or kernel filters. Empirical distributions, for instance piecewise linear approximations to arbitrary PDFs and functions can be used. Another empirical choice leads to the rank histogram filter. Results here are univariate and can be used to compute increments for observed variables or marginal distributions for any variable for a reanalysis. Linear regression of increments can be used to update state variables in a serial filter to build a comprehensive data assimilation system. Part 2 will discuss other methods for extending the framework to multivariate data assimilation.

Significance Statement

Data assimilation is used to combine information from model forecasts with subsequent observations to obtain better estimates of the current state of the atmosphere or other parts of the Earth system. Ensemble data assimilation uses a number of forecasts to get more information about uncertainty. A new method allows much more flexibility in the assumptions that must be made when doing ensemble data assimilation. As an example, the method can be better for quantities that are bounded like the amount of an atmospheric trace pollutant.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeffrey L. Anderson, jla@ucar.edu

Abstract

A general framework for deterministic univariate ensemble filtering is presented. The framework fits a continuous prior probability density function (PDF) to the prior ensemble. A functional representation for the observation likelihood is combined with the prior PDF to get a continuous analysis (posterior) PDF. Cumulative distribution functions for the prior and analysis are also required. The key innovation is that an analysis ensemble is computed so that the quantile of each ensemble member is the same as its prior quantile. Many choices for the prior PDF family and the likelihood function are described. A choice of normal prior with normal likelihood is equivalent to the ensemble adjustment Kalman filter. Some other choices for the prior include gamma, inverse gamma, beta, beta prime, lognormal, and exponential distributions. Both prior distributions and likelihoods can be defined over a set of intervals giving additional flexibility that can be used to implement methods like a Huber likelihood for observations with occasional outliers. Priors and likelihoods can also be defined as sums of distributions allowing choices like bivariate normals or kernel filters. Empirical distributions, for instance piecewise linear approximations to arbitrary PDFs and functions can be used. Another empirical choice leads to the rank histogram filter. Results here are univariate and can be used to compute increments for observed variables or marginal distributions for any variable for a reanalysis. Linear regression of increments can be used to update state variables in a serial filter to build a comprehensive data assimilation system. Part 2 will discuss other methods for extending the framework to multivariate data assimilation.

Significance Statement

Data assimilation is used to combine information from model forecasts with subsequent observations to obtain better estimates of the current state of the atmosphere or other parts of the Earth system. Ensemble data assimilation uses a number of forecasts to get more information about uncertainty. A new method allows much more flexibility in the assumptions that must be made when doing ensemble data assimilation. As an example, the method can be better for quantities that are bounded like the amount of an atmospheric trace pollutant.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeffrey L. Anderson, jla@ucar.edu
Save