The Modulation Effect of Sea Surface Cooling on the Eyewall Replacement Cycle in Typhoon Trami (2018)

Xiangcheng Li aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Xiangcheng Li in
Current site
Google Scholar
PubMed
Close
,
Xiaoping Cheng aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Xiaoping Cheng in
Current site
Google Scholar
PubMed
Close
,
Jianfang Fei aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Jianfang Fei in
Current site
Google Scholar
PubMed
Close
,
Xiaogang Huang aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Xiaogang Huang in
Current site
Google Scholar
PubMed
Close
, and
Juli Ding aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Juli Ding in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The duration of the eyewall replacement cycle (ERC) in typhoons is determined by the rate of dissipation of the inner eyewall and intensification of the outer eyewall, which is an important indicator for predicting changes in the intensity and structure of typhoons. Previous studies on ERCs have focused on the internal storm dynamics associated with the interactions between the concentric eyewalls (CEs), but the impacts of the sea surface cooling (SSC) on ERCs remain not adequately investigated. The slow movement of Typhoon Trami results in remarkable SSC. Using a coupled atmosphere–ocean model, the simulation for Trami generates an ERC that matches observations, whereas an unrealistic long-lived ERC is produced in the uncoupled simulation. Numerical simulations suggest that the typhoon-induced nonuniform SSC cannot only weaken the typhoon, but can also modulate the duration of the ERCs. The SSC acts like a catalyst for triggering the negative feedback between the surface heat exchange and the circulations of Trami to reduce the energy supply to the inner eyewall more severely where the sea surface temperature (SST) dropped more sharply. The SSC works in concert with the interactions between the CEs to weaken the inner eyewall faster, thus terminating the ERC of Trami rapidly. The results indicate that a better understanding of the modulation effect of SSC is required for the accurate forecast of ERCs.

Significance Statement

The duration of the eyewall replacement cycle in typhoons is determined by the rate of dissipation of the inner eyewall and intensification of the outer eyewall. While much is known about the cutoff effects of the outer eyewall on the dissipation of the inner eyewall, few studies have examined the dissipation induced by sea surface cooling. Using the coupled atmosphere–ocean model, the simulation for Trami generates an eyewall replacement cycle that matches observations, whereas an unrealistic long-lived one is produced in the uncoupled simulation. The results suggest that the typhoon-induced nonuniform sea surface cooling cannot only weaken the typhoon, but can also modulate the duration of the eyewall replacement cycle, which is essential for the accurate forecasting of eyewall replacement cycles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoping Cheng, chengxiaoping17@nudt.edu.cn

Abstract

The duration of the eyewall replacement cycle (ERC) in typhoons is determined by the rate of dissipation of the inner eyewall and intensification of the outer eyewall, which is an important indicator for predicting changes in the intensity and structure of typhoons. Previous studies on ERCs have focused on the internal storm dynamics associated with the interactions between the concentric eyewalls (CEs), but the impacts of the sea surface cooling (SSC) on ERCs remain not adequately investigated. The slow movement of Typhoon Trami results in remarkable SSC. Using a coupled atmosphere–ocean model, the simulation for Trami generates an ERC that matches observations, whereas an unrealistic long-lived ERC is produced in the uncoupled simulation. Numerical simulations suggest that the typhoon-induced nonuniform SSC cannot only weaken the typhoon, but can also modulate the duration of the ERCs. The SSC acts like a catalyst for triggering the negative feedback between the surface heat exchange and the circulations of Trami to reduce the energy supply to the inner eyewall more severely where the sea surface temperature (SST) dropped more sharply. The SSC works in concert with the interactions between the CEs to weaken the inner eyewall faster, thus terminating the ERC of Trami rapidly. The results indicate that a better understanding of the modulation effect of SSC is required for the accurate forecast of ERCs.

Significance Statement

The duration of the eyewall replacement cycle in typhoons is determined by the rate of dissipation of the inner eyewall and intensification of the outer eyewall. While much is known about the cutoff effects of the outer eyewall on the dissipation of the inner eyewall, few studies have examined the dissipation induced by sea surface cooling. Using the coupled atmosphere–ocean model, the simulation for Trami generates an eyewall replacement cycle that matches observations, whereas an unrealistic long-lived one is produced in the uncoupled simulation. The results suggest that the typhoon-induced nonuniform sea surface cooling cannot only weaken the typhoon, but can also modulate the duration of the eyewall replacement cycle, which is essential for the accurate forecasting of eyewall replacement cycles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoping Cheng, chengxiaoping17@nudt.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.87 MB)
Save
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. L. Elsberry, and P. A. Harr, 2017: Modeling interaction of a tropical cyclone with its cold wake. J. Atmos. Sci., 74, 39814001, https://doi.org/10.1175/JAS-D-16-0246.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, C.-J., and C.-C. Wu, 2018: The role of WISHE in secondary eyewall formation. J. Atmos. Sci., 75, 38233841, https://doi.org/10.1175/JAS-D-17-0236.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., G. M. Heymsfield, P. D. Reasor, and S. R. Guimond, 2017: Concentric eyewall asymmetries in Hurricane Gonzalo (2014) observed by airborne radar. Mon. Wea. Rev., 145, 729749, https://doi.org/10.1175/MWR-D-16-0175.1.

    • Search Google Scholar
    • Export Citation
  • Dolling, K. P., and G. M. Barnes, 2012: The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto (2001) and its possible role in storm deepening. Mon. Wea. Rev., 140, 492505, https://doi.org/10.1175/MWR-D-11-00068.1.

    • Search Google Scholar
    • Export Citation
  • Dougherty, E. M., J. Molinari, R. F. Rogers, J. A. Zhang, and J. P. Kossin, 2018: Hurricane Bonnie (1998): Maintaining intensity during high vertical wind shear and an eyewall replacement cycle. Mon. Wea. Rev., 146, 33833399, https://doi.org/10.1175/MWR-D-18-0030.1.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Nor., 5, 1960.

  • Emanuel, K., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, 15.115.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Search Google Scholar
    • Export Citation
  • Gao, S., S. Zhai, B. Chen, and T. Li, 2017: Water budget and intensity change of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 145, 30093023, https://doi.org/10.1175/MWR-D-17-0033.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W. C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Search Google Scholar
    • Export Citation
  • Huang, X., X. Peng, J. Fei, X. Cheng, J. Ding, and D. Yu, 2021: Evaluation and error analysis of official tropical cyclone intensity forecasts during 2005–2018 for the western North Pacific. J. Meteor. Soc. Japan, 99, 139163, https://doi.org/10.2151/jmsj.2021-008.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. S., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Search Google Scholar
    • Export Citation
  • Kanada, S., S. Tsujino, H. Aiki, M. K. Yoshioka, Y. Miyazawa, K. Tsuboki, and I. Takayabu, 2017: Impacts of SST patterns on rapid intensification of Typhoon Megi (2010). J. Geophys. Res. Atmos., 122, 13 24513 262, https://doi.org/10.1002/2017JD027252.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, https://doi.org/10.1175/JAS-D-13-046.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. DeMaria, 2016: Reducing operational hurricane intensity forecast errors during eyewall replacement cycles. Wea. Forecasting, 31, 601608, https://doi.org/10.1175/WAF-D-15-0123.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 38933917, https://doi.org/10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770, https://doi.org/10.1175/2009MWR2850.1.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lai, T.-K., K. Menelaou, and T.-K. Lai, 2019: Barotropic instability across the moat and inner eyewall dissipation: A numerical study of Hurricane Wilma (2005). J. Atmos. Sci., 76, 9891013, https://doi.org/10.1175/JAS-D-18-0191.1.

    • Search Google Scholar
    • Export Citation
  • Lai, T.-K., E. A. Hendricks, K. Menelaou, and M. K. Yau, 2021a: Roles of barotropic instability across the moat in inner eyewall decay and outer eyewall intensification: Three-dimensional numerical experiments. J. Atmos. Sci., 78, 473496, https://doi.org/10.1175/JAS-D-20-0168.1.

    • Search Google Scholar
    • Export Citation
  • Lai, T.-K., E. A. Hendricks, M. K. Yau, and K. Menelaou, 2021b: Roles of barotropic instability across the moat in inner eyewall decay and outer eyewall intensification: Essential dynamics. J. Atmos. Sci., 78, 14111428, https://doi.org/10.1175/JAS-D-20-0169.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I. I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I. I., I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, https://doi.org/10.1175/2009MWR2713.1.

    • Search Google Scholar
    • Export Citation
  • Liu, X., D. L. Zhang, and J. Guan, 2019: Parameterizing sea surface temperature cooling induced by tropical cyclones: 2. Verification by ocean drifters. J. Geophys. Res. Oceans, 124, 12321243, https://doi.org/10.1029/2018JC014118.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., 2020: A study of the interaction between Typhoon Francisco (2013) and a cold-core eddy. Part I: Rapid weakening. J. Atmos. Sci., 77, 355377, https://doi.org/10.1175/JAS-D-18-0378.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., and J. Fei, 2022: A comparison between moist and dry tropical cyclones: The low effectiveness of surface sensible heat flux in storm intensification. J. Atmos. Sci., 79, 3149, https://doi.org/10.1175/JAS-D-21-0014.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Huang, and X. Cheng, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120140, https://doi.org/10.1175/JAS-D-14-0199.1.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Razin, N., and M. M. Bell, 2021: The unconventional eyewall replacement cycle of Hurricane Ophelia (2005). Mon. Wea. Rev., 149, 21512170, https://doi.org/10.1175/MWR-D-20-0181.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, https://doi.org/10.1175/2009JAS3122.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, and B. D. McNoldy, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340, https://doi.org/10.1175/JAS3595.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593, https://doi.org/10.1002/qj.237.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, https://doi.org/10.1175/JAS-D-11-0326.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., 2019: Upper ocean structure: Responses to strong atmospheric forcing events. Encyclopedia of Ocean Sciences, 3rd ed. J. K. Cochran, H. J. Bokuniewicz, and P. L. Yager, Eds., Academic Press, 8696.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., Y. Jiang, B. Tan, and F. Zhang, 2013: The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70, 38183837, https://doi.org/10.1175/JAS-D-13-044.1.

    • Search Google Scholar
    • Export Citation
  • Tsujino, S., K. Tsuboki, and H.-C. Kuo, 2017: Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven (2012). J. Atmos. Sci., 74, 36093634, https://doi.org/10.1175/JAS-D-16-0236.1.

    • Search Google Scholar
    • Export Citation
  • Tsujino, S., T. Horinouchi, T. Tsukada, H. C. Kuo, H. Yamada, and K. Tsuboki, 2021: Inner‐core wind field in a concentric eyewall replacement of Typhoon Trami (2018): A quantitative analysis based on the Himawari‐8 satellite. J. Geophys. Res. Atmos., 126, e2020JD034434, https://doi.org/10.1029/2020JD034434.

    • Search Google Scholar
    • Export Citation
  • Tyner, B., P. Zhu, J. A. Zhang, S. Gopalakrishnan, F. Marks, and V. Tallapragada, 2018: A top‐down pathway to secondary eyewall formation in simulated tropical cyclones. J. Geophys. Res. Atmos., 123, 174197, https://doi.org/10.1002/2017JD027410.

    • Search Google Scholar
    • Export Citation
  • Van Nguyen, H., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 14631491, https://doi.org/10.1175/2011MWR3505.1.

    • Search Google Scholar
    • Export Citation
  • Wada, A., S. Kanada, and H. Yamada, 2018: Effect of air‐sea environmental conditions and interfacial processes on extremely intense Typhoon Haiyan (2013). J. Geophys. Res. Atmos., 123, 10 37910 405, https://doi.org/10.1029/2017JD028139.

    • Search Google Scholar
    • Export Citation
  • Walker, N. D., and Coauthors, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophys. Res. Lett., 41, 75957601, https://doi.org/10.1002/2014GL061584.

    • Search Google Scholar
    • Export Citation
  • Wang, G., L. Wu, N. C. Johnson, and Z. Ling, 2016: Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophys. Res. Lett., 43, 76327638, https://doi.org/10.1002/2016GL069605.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, https://doi.org/10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., C.-C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 39113930, https://doi.org/10.1175/JAS-D-15-0146.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Wang, J. Xu, and Y. Duan, 2019: The axisymmetric and asymmetric aspects of the secondary eyewall formation in a numerically simulated tropical cyclone under idealized conditions on an f plane. J. Atmos. Sci., 76, 357378, https://doi.org/10.1175/JAS-D-18-0130.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Q. Li, and N. E. Davidson, 2018: The coupled dynamic and thermodynamic processes for secondary eyewall formation. J. Geophys. Res. Atmos., 123, 91929219, https://doi.org/10.1029/2018JD028604.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Heng, 2016: Contribution of eye excess energy to the intensification rate of tropical cyclones: A numerical study. J. Adv. Model. Earth Syst., 8, 19531968, https://doi.org/10.1002/2016MS000709.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-F., and Z.-M. Tan, 2020: Outer rainbands–driven secondary eyewall formation of tropical cyclones. J. Atmos. Sci., 77, 22172236, https://doi.org/10.1175/JAS-D-19-0304.1.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183191.

  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2007: MIMIC: A new approach to visualizing satellite microwave imagery of tropical cyclones. Bull. Amer. Meteor. Soc., 88, 11871196, https://doi.org/10.1175/BAMS-88-8-1187.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2016: Advancements in objective multisatellite tropical cyclone center fixing. J. Appl. Meteor. Climatol., 55, 197212, https://doi.org/10.1175/JAMC-D-15-0098.1.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., D. Herndon, and J. Kossin, 2017: Improved eyewall replacement cycle forecasting using ARCHER—A modified microwave-based algorithm (year 2). NOAA Joint Hurricane Testbed Rep., 26 pp., https://www.ofcm.gov/meetings/TCORF/ihc17/Session_09/9-2%20archer-erc_web.pdf.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., J. Kossin, and D. Herndon, 2018: Improved eyewall replacement cycle forecasting using a modified microwave-based algorithm. 33rd Conf. on Hurricanes and Tropical Meteorology, Jacksonville, FL, Amer.Meteor. Soc., 10D.2, https://ams.confex.com/ams/33HURRICANE/meetingapp.cgi/Paper/339864.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527, https://doi.org/10.1175/MWR-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific. Wea. Forecasting, 33, 523537, https://doi.org/10.1175/WAF-D-17-0095.1.

    • Search Google Scholar
    • Export Citation
  • Yang, L., X. Cheng, X. Huang, J. Fei, and X. Li, 2020: Effects of air‐sea interaction on the eyewall replacement cycle of Typhoon Sinlaku (2008): Verification of numerical simulation. Earth Space Sci., 7, e2019EA000763, https://doi.org/10.1029/2019EA000763.

    • Search Google Scholar
    • Export Citation
  • Yang, Y.-T., H.-C. Kuo, E. A. Hendricks, and M. S. Peng, 2013: Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev., 141, 26322648, https://doi.org/10.1175/MWR-D-12-00251.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y.-T., E. A. Hendricks, H.-C. Kuo, and M. S. Peng, 2014: Long-lived concentric eyewalls in Typhoon Soulik (2013). Mon. Wea. Rev., 142, 33653371, https://doi.org/10.1175/MWR-D-14-00085.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and K. Emanuel, 2016: On the role of surface fluxes and WISHE in tropical cyclone intensification. J. Atmos. Sci., 73, 20112019, https://doi.org/10.1175/JAS-D-16-0011.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and W. Perrie, 2018: Effects of asymmetric secondary eyewall on tropical cyclone evolution in Hurricane Ike (2008). Geophys. Res. Lett., 45, 16761683, https://doi.org/10.1002/2017GL076988.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988, https://doi.org/10.1175/2011JAS3575.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2015: Impact of subgrid‐scale processes on eyewall replacement cycle of tropical cyclones in HWRF system. Geophys. Res. Lett., 42, https://doi.org/10.1002/2015GL066436.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 119, 80498072, https://doi.org/10.1002/2014JD021899.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2015: Sensitivities of eyewall replacement cycle to model physics, vortex structure, and background winds in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 120, 590622, https://doi.org/10.1002/2014JD022056.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 770 0 0
Full Text Views 1039 778 242
PDF Downloads 550 252 13