The Value of Assimilating Different Ground-Based Profiling Networks on the Forecasts of Bore-Generating Nocturnal Convection

Hristo G. Chipilski aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
bAdvanced Study Program, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hristo G. Chipilski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3287-0038
,
Xuguang Wang aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
,
David B. Parsons aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Parsons in
Current site
Google Scholar
PubMed
Close
,
Aaron Johnson aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Aaron Johnson in
Current site
Google Scholar
PubMed
Close
, and
Samuel K. Degelia aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Samuel K. Degelia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is a growing interest in the use of ground-based remote sensors for numerical weather prediction, which is sparked by their potential to address the currently existing observation gap within the planetary boundary layer. Nevertheless, open questions still exist regarding the relative importance of and synergy among various instruments. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, in terms of both the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors that can further limit the forecast value extracted from such networks.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the PECAN:Plains Elevated Convection At Night Special Collection.

Corresponding author: Dr. Hristo G. Chipilski, hristoc@ucar.edu

Abstract

There is a growing interest in the use of ground-based remote sensors for numerical weather prediction, which is sparked by their potential to address the currently existing observation gap within the planetary boundary layer. Nevertheless, open questions still exist regarding the relative importance of and synergy among various instruments. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, in terms of both the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors that can further limit the forecast value extracted from such networks.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the PECAN:Plains Elevated Convection At Night Special Collection.

Corresponding author: Dr. Hristo G. Chipilski, hristoc@ucar.edu
Save
  • Adam, S., A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, 2016: First assimilation of temperature lidar data into an NWP model: Impact on the simulation of the temperature field, inversion strength and PBL depth. Quart. J. Roy. Meteor. Soc., 142, 28822896, https://doi.org/10.1002/qj.2875.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., B. E. Schwartz, E. J. Szoke, and S. E. Koch, 2004: The value of wind profiler data in U. S. weather forecasting. Bull. Amer. Meteor. Soc., 85, 18711886, https://doi.org/10.1175/BAMS-85-12-1871.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., 2001: The use of profiler data at ECMWF. Meteor. Z., 10, 497510, https://doi.org/10.1127/0941-2948/2001/0010-0497.

  • Carroll, B. J., B. B. Demoz, D. D. Turner, and R. Delgado, 2021: Lidar observations of a mesoscale moisture transport event impacting convection and comparison to Rapid Refresh model analysis. Mon. Wea. Rev., 149, 463477, https://doi.org/10.1175/MWR-D-20-0151.1.

    • Search Google Scholar
    • Export Citation
  • Caumont, O., and Coauthors, 2016: Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model. Quart. J. Roy. Meteor. Soc., 142, 26922704, https://doi.org/10.1002/qj.2860.

    • Search Google Scholar
    • Export Citation
  • Chipilski, H. G., X. Wang, and D. B. Parsons, 2018: Object-based algorithm for the identification and tracking of convective outflow boundaries in numerical models. Mon. Wea. Rev., 146, 41794200, https://doi.org/10.1175/MWR-D-18-0116.1.

    • Search Google Scholar
    • Export Citation
  • Chipilski, H. G., X. Wang, and D. B. Parsons, 2020: Impact of assimilating PECAN profilers on the prediction of bore-driven nocturnal convection: A multi-scale forecast evaluation for the 6 July 2015 case study. Mon. Wea. Rev., 148, 11471175, https://doi.org/10.1175/MWR-D-19-0171.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, NASA/Goddard Space Flight Center, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted AERI and Doppler lidar wind retrievals on short-term forecasts of the initiation and early evolution of thunderstorms. Mon. Wea. Rev., 147, 11491170, https://doi.org/10.1175/MWR-D-18-0351.1.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, D. Stensrud, and D. D. Turner, 2020: Systematic evaluation of the impact of assimilating a network of ground-based remote sensing profilers for forecasts of nocturnal convection initiation during PECAN. Mon. Wea. Rev., 148, 47034728, https://doi.org/10.1175/MWR-D-20-0118.1.

    • Search Google Scholar
    • Export Citation
  • Fourriè, N., M. Nuret, P. Brousseau, and O. Caumont, 2021: Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment. Nat. Hazards Earth Syst. Sci., 21, 463480, https://doi.org/10.5194/nhess-21-463-2021.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Grzeschik, M., and Coauthors, 2008: Four-dimensional variational data analysis of water vapor Raman lidar data and their impact on mesoscale forecasts. J. Atmos. Oceanic Technol., 25, 14371453, https://doi.org/10.1175/2007JTECHA974.1.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., and Coauthors, 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 12181256, https://doi.org/10.1002/qj.3179.

    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and Coauthors, 2018: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., R. S. Schumacher, G. Herman, M. C. Coniglio, M. D. Parker, and C. L. Ziegler, 2019: Evolution of pre- and postconvective environmental profiles from mesoscale convective systems during PECAN. Mon. Wea. Rev., 147, 23292354, https://doi.org/10.1175/MWR-D-18-0231.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S., and J. J. Lim, 2006: TheWRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecasts of a tornadic supercell event. Wea. Forecasting, 34, 14531476, https://doi.org/10.1175/WAF-D-18-0200.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2019: Multicase assessment of the impacts of horizontal and vertical grid spacing, and turbulence closure model, on subkilometer-scale simulations of atmospheric bores during PECAN. Mon. Wea. Rev., 147, 15331555, https://doi.org/10.1175/MWR-D-18-0322.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, K. R. Haghi, and D. B. Parsons, 2018: Evaluation of forecasts of a convectively generated bore using an intensively observed case study from PECAN. Mon. Wea. Rev., 146, 30973122, https://doi.org/10.1175/MWR-D-18-0059.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., H. Iwai, H. Seko, Y. Shoji, K. Saito, S. Ishii, and K. Mizutani, 2014: Cloud-resolving 4D-Var assimilation of Doppler wind lidar data on a meso-gamma-scale convective system. Mon. Wea. Rev., 142, 44844498, https://doi.org/10.1175/MWR-D-13-00362.1.

    • Search Google Scholar
    • Export Citation
  • Leuenberger, D., A. Haefele, N. Omanovic, M. Fengler, G. Martucci, B. Calpini, O. Fuhrer, and A. Rossa, 2020: Improving high-impact numerical weather prediction with lidar and drone observations. Bull. Amer. Meteor. Soc., 101, E1036E1051, https://doi.org/10.1175/BAMS-D-19-0119.1.

    • Search Google Scholar
    • Export Citation
  • Lewis, W. E., T. J. Wagner, J. A. Otkin, and T. A. Jones, 2020: Impact of AERI temperature and moisture retrievals on the simulation of a Central Plains severe convective weather event. Atmosphere, 11, 729, https://doi.org/10.3390/atmos11070729.

    • Search Google Scholar
    • Export Citation
  • Li, L., N. Xie, L. Fu, K. Zhang, A. Shao, Y. Yang, and X. Ren, 2020: Impact of lidar data assimilation on low-level wind shear simulation at Lanzhou Zhongchuan international airport, China: A case study. Atmosphere, 11, 1342, https://doi.org/10.3390/atmos11121342.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and D. Perkey, 1976: Sensitivity of mesoscale predictions to mesoscale initial data. Quart. J. Roy. Meteor. Soc., 116, 779798.

    • Search Google Scholar
    • Export Citation
  • Lin, G., C. Grasmick, B. Geerts, Z. Wang, and M. Deng, 2021: Convection initiation and bore formation following the collision of mesoscale boundaries over a developing stable boundary layer: A case study from PECAN. Mon. Wea. Rev., 149, 23512367, https://doi.org/10.1175/MWR-D-20-0282.1.

    • Search Google Scholar
    • Export Citation
  • Loveless, D. M., T. J. Wagner, D. D. Turner, S. A. Ackerman, and W. F. Feltz, 2019: A composite perspective on bore passage during the PECAN campaign. Mon. Wea. Rev., 147, 13951413, https://doi.org/10.1175/MWR-D-18-0291.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinet, P., A. Dabas, J.-M. Donier, T. Douffet, O. Garrouste, and R. Guillot, 2015: 1D-Var temperature retrievals from microwave radiometer and convective scale model. Tellus, 67A, 27925, https://doi.org/10.3402/tellusa.v67.27925.

    • Search Google Scholar
    • Export Citation
  • Martinet, P., D. Cimini, F. De Angelis, G. Canut, V. Unger, R. Guillot, D. Tzanos, and A. Paci, 2017: Combining ground-based microwave radiometer and the AROME convective scale model through 1DVar retrievals in complex terrain: An alpine valley case study. Atmos. Meas. Tech., 10, 33853402, https://doi.org/10.5194/amt-10-3385-2017.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., C. L. Ziegler, and M. I. Biggerstaff, 2020: Seven-Doppler radar and in situ analysis of the 25–26 June 2015 Kansas MCS during PECAN. Mon. Wea. Rev., 148, 211240, https://doi.org/10.1175/MWR-D-19-0151.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, D., B. Geerts, Z. Wang, M. Deng, and C. Grasmick, 2017: Evolution and vertical structure of an undular bore observed on 20 June 2015 during PECAN. Mon. Wea. Rev., 145, 37753794, https://doi.org/10.1175/MWR-D-16-0305.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2009: Observing Weather and Climate from the Ground up: A Nationwide Network of Networks. The National Academies Press, 250 pp., https://doi.org/10.17226/12540.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010: When Weather Matters: Science and Services to Meet Critical Societal Needs. The National Academies Press, 198 pp., https://doi.org/10.17226/12888.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2012: Weather Services for the Nation: Becoming Second to None. The National Academies Press, 86 pp., https://doi.org/10.17226/13429.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., B. S. Borchardt, R. L. Miller, and C. L. Ziegler, 2020: Simulated evolution and severe wind production by the 25–26 June 2015 nocturnal MCS from PECAN. Mon. Wea. Rev., 148, 183209, https://doi.org/10.1175/MWR-D-19-0072.1.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores in the initiation and maintenance of nocturnal convection over the southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Search Google Scholar
    • Export Citation
  • Qi, Y., S. Fan, J. Mao, B. Li, C. Guo, and S. Zhang, 2021: Impact of assimilating ground-based microwave radiometer data on the precipitation bifurcation forecast: A case study in Beijing. Atmosphere, 12, 551, https://doi.org/10.3390/atmos12050551.

    • Search Google Scholar
    • Export Citation
  • Smith, E. N., G. J. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The Great Plains low-level jet during PECAN: Observed and simulated characteristics. Mon. Wea. Rev., 147, 18451869, https://doi.org/10.1175/MWR-D-18-0293.1.

    • Search Google Scholar
    • Export Citation
  • Stechman, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and R. A. Black, 2020: Composite in situ microphysical analysis of all spiral vertical profiles executed within BAMEX and PECAN mesoscale convective systems. J. Atmos. Sci., 77, 25412565, https://doi.org/10.1175/JAS-D-19-0317.1.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/84Annual/webprogram/Paper69061.html.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale vertical motions near nocturnal convection initiation in PECAN. Mon. Wea. Rev., 145, 29192941, https://doi.org/10.1175/MWR-D-17-0005.1.

    • Search Google Scholar
    • Export Citation
  • Vandenberghe, F., and R. Ware, 2002: 4-dimensional variational assimilation of ground-based microwave observations during a winter fog event. Proc. Int. Symp. on Atmospheric Sensing with GPS, Tsukuba, Japan, Japan Meteorological Agency, 3–05, https://radiometrics.com/wp-content/uploads/2021/10/Vandenberghe_ASGPS-02.pdf.

    • Search Google Scholar
    • Export Citation
  • Wang, C., Y. Chen, M. Chen, and J. Shen, 2020: Data assimilation of a dense wind profiler network and its impact on convective forecasting. Atmos. Res., 238, 104880, https://doi.org/10.1016/j.atmosres.2020.104880.

    • Search Google Scholar
    • Export Citation
  • Wang, X., H. G. Chipilski, C. H. Bishop, E. Satterfield, N. Baker, and J. S. Whitaker, 2021: A multiscale local gain form ensemble transform Kalman filter (MLGETKF). Mon. Wea. Rev., 149, 605622, https://doi.org/10.1175/MWR-D-20-0290.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and U. Romatschke, 2019: Where, when, and why did it rain during PECAN? Mon. Wea. Rev., 147, 35573573, https://doi.org/10.1175/MWR-D-18-0458.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, https://doi.org/10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, B. L., and K. R. Helfrich, 2012: A general description of a gravity current front propagating in a two-layer stratified fluid. J. Fluid Mech., 711, 545, https://doi.org/10.1017/jfm.2012.409.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2018: Statement of guidance for high-resolution numerical weather prediction (NWP). WMO Rep., WMO, 10 pp.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys., 53, 819895, https://doi.org/10.1002/2014RG000476.

    • Search Google Scholar
    • Export Citation
  • Yoshida, S., S. Yokota, H. Seko, T. Sakai, and T. Nagai, 2020: Observation system simulation experiments of water vapor profiles observed by Raman lidar using LETKF system. SOLA, 16, 4350, https://doi.org/10.2151/sola.2020-008.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and Z. Pu, 2011: Four-dimensional assimilation of multitime wind profiles over a single station and numerical simulation of a mesoscale convective system observed during IHOP_2002. Mon. Wea. Rev., 139, 33693388, https://doi.org/10.1175/2011MWR3569.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., G. Torri, C. Muller, and A. Chandra, 2017: A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surv. Geophys., 38, 12831305, https://doi.org/10.1007/s10712-017-9447-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 416 0 0
Full Text Views 1938 1358 30
PDF Downloads 524 219 12