Overlapping Windows in a Global Hourly Data Assimilation System

Laura C. Slivinski aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Laura C. Slivinski in
Current site
Google Scholar
PubMed
Close
,
Donald E. Lippi cI.M. Systems Group, Inc., Rockville, Maryland
dNOAA/Environmental Modeling Center, College Park, Maryland
eUniversity of Maryland, College Park, College Park, Maryland

Search for other papers by Donald E. Lippi in
Current site
Google Scholar
PubMed
Close
,
Jeffrey S. Whitaker bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Jeffrey S. Whitaker in
Current site
Google Scholar
PubMed
Close
,
Guoqing Ge aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
fNOAA/Global Systems Laboratory, Boulder, Colorado

Search for other papers by Guoqing Ge in
Current site
Google Scholar
PubMed
Close
,
Jacob R. Carley dNOAA/Environmental Modeling Center, College Park, Maryland

Search for other papers by Jacob R. Carley in
Current site
Google Scholar
PubMed
Close
,
Curtis R. Alexander fNOAA/Global Systems Laboratory, Boulder, Colorado

Search for other papers by Curtis R. Alexander in
Current site
Google Scholar
PubMed
Close
, and
Gilbert P. Compo aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Gilbert P. Compo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The U.S. operational global data assimilation system provides updated analysis and forecast fields every 6 h, which is not frequent enough to handle the rapid error growth associated with hurricanes or other storms. This motivates development of an hourly updating global data assimilation system, but observational data latency can be a barrier. Two methods are presented to overcome this challenge: “catch-up cycles,” in which a 1-hourly system is reinitialized from a 6-hourly system that has assimilated high-latency observations; and “overlapping assimilation windows,” in which the system is updated hourly with new observations valid in the past 3 h. The performance of these methods is assessed in a near-operational setup using the Global Forecast System by comparing forecasts with in situ observations. At short forecast leads, the overlapping windows method performs comparably to the 6-hourly control in a simplified configuration and outperforms the control in a full-input configuration. In the full-input experiment, the catch-up cycle method performs similarly to the 6-hourly control; reinitializing from the 6-hourly control does not appear to provide a significant benefit. Results suggest that the overlapping windows method performs well in part because of the hourly update cadence, but also because hourly cycling systems can make better use of available observations. The impact of the hourly update relative to the 6-hourly update is most significant during the first forecast day, while impacts on longer-range forecasts were found to be mixed and mostly insignificant. Further effort toward an operational global hourly updating system should be pursued.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laura Slivinski, laura.slivinski@noaa.gov

Abstract

The U.S. operational global data assimilation system provides updated analysis and forecast fields every 6 h, which is not frequent enough to handle the rapid error growth associated with hurricanes or other storms. This motivates development of an hourly updating global data assimilation system, but observational data latency can be a barrier. Two methods are presented to overcome this challenge: “catch-up cycles,” in which a 1-hourly system is reinitialized from a 6-hourly system that has assimilated high-latency observations; and “overlapping assimilation windows,” in which the system is updated hourly with new observations valid in the past 3 h. The performance of these methods is assessed in a near-operational setup using the Global Forecast System by comparing forecasts with in situ observations. At short forecast leads, the overlapping windows method performs comparably to the 6-hourly control in a simplified configuration and outperforms the control in a full-input configuration. In the full-input experiment, the catch-up cycle method performs similarly to the 6-hourly control; reinitializing from the 6-hourly control does not appear to provide a significant benefit. Results suggest that the overlapping windows method performs well in part because of the hourly update cadence, but also because hourly cycling systems can make better use of available observations. The impact of the hourly update relative to the 6-hourly update is most significant during the first forecast day, while impacts on longer-range forecasts were found to be mixed and mostly insignificant. Further effort toward an operational global hourly updating system should be pursued.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laura Slivinski, laura.slivinski@noaa.gov
Save
  • Alexander, C., and Coauthors, 2020: Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) model development. 30th Conf. on Weather Analysis and Forecasting (WAF)/26th Conf. on Numerical Weather Prediction (NWP), Boston, MA, Amer. Meteor. Soc., 8A.1, https://ams.confex.com/ams/2020Annual/webprogram/Paper370205.html.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, T. L., and Coauthors, 2021: A limited area modeling capability for the finite-volume cubed-sphere (FV3) dynamical core and comparison with a global two-way nest. J. Adv. Model. Earth Syst., 13, e2021MS002483, https://doi.org/10.1029/2021MS002483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocquet, M., C. A. Pires, and L. Wu, 2010: Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Wea. Rev., 138, 29973023, https://doi.org/10.1175/2010MWR3164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., P. Lean, and E. Holm, 2018: Nonlinear effects in 4D-Var. Nonlinear Processes Geophys., 25, 713729, https://doi.org/10.5194/npg-25-713-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239250, https://doi.org/10.1002/qj.366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 18281845, https://doi.org/10.1175/MWR3351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer, 303343.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., Y. Trémolet, H. Auvinen, D. Tan, and P. Poli, 2011: Weak-constraint and long-window 4D-Var. ECMWF Tech. Memo. 655, 49 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/9414-weak-constraint-and-long-window-4dvar.pdf.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., 2016: Significance of changes in medium-range forecast scores. Tellus, 68A, 30229, https://doi.org/10.3402/tellusa.v68.30229.

  • Haseler, J., 2004: Early-delivery suite. ECMWF Tech. Memo. 454, 37 pp., https://www.ecmwf.int/sites/default/files/elibrary/2004/9793-early-delivery-suite.pdf.

    • Search Google Scholar
    • Export Citation
  • He, H., L. Lei, J. S. Whitaker, and Z.-M. Tan, 2020: Impacts of assimilation frequency on ensemble Kalman filter data assimilation and imbalances. J. Adv. Model. Earth Syst., 12, e2020MS002187, https://doi.org/10.1029/2020MS002187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, E. P., and S. G. Benjamin, 2017: Observation system experiments with the hourly updating Rapid Refresh model using GSI hybrid ensemble–variational data assimilation. Mon. Wea. Rev., 145, 28972918, https://doi.org/10.1175/MWR-D-16-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, E. P., S. G. Benjamin, and B. D. Jamison, 2020: Commercial-aircraft-based observations for NWP: Global coverage, data impacts, and COVID-19. J. Appl. Meteor. Climatol., 59, 18091825, https://doi.org/10.1175/JAMC-D-20-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-M., and H. M. Kim, 2019: Forecast sensitivity observation impact in the 4DVAR and hybrid-4DVAR data assimilation systems. J. Atmos. Oceanic Technol., 36, 15631575, https://doi.org/10.1175/JTECH-D-18-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, https://doi.org/10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, P., E. V. Hólm, M. Bonavita, N. Bormann, A. P. McNally, and H. Järvinen, 2021: Continuous data assimilation for global numerical weather prediction. Quart. J. Roy. Meteor. Soc., 147, 273288, https://doi.org/10.1002/qj.3917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26052621, https://doi.org/10.1175/MWR-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., S. S. Weygandt, S. G. Benjamin, and M. Hu, 2017: Satellite radiance data assimilation within the hourly updated Rapid Refresh. Wea. Forecasting, 32, 12731287, https://doi.org/10.1175/WAF-D-16-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., S. Lord, N. Surgi, Y. Zhu, R. Wobus, Z. Toth, and T. Marchok, 2006: Hurricane relocation in global ensemble forecast system. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc. P5.13, https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108503.htm.

    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017: GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A. P., 2019: On the sensitivity of a 4D-Var analysis system to satellite observations located at different times within the assimilation window. Quart. J. Roy. Meteor. Soc., 145, 28062816, https://doi.org/10.1002/qj.3596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp., https://doi.org/10.21957/ps8gbwbdv.

    • Search Google Scholar
    • Export Citation
  • Payne, T. J., 2017: Rapid update cycling with delayed observations. Tellus, 69A, 1409061, https://doi.org/10.1080/16000870.2017.1409061.

  • Penny, S. G., 2014: The hybrid local ensemble transform Kalman filter. Mon. Wea. Rev., 142, 21392149, https://doi.org/10.1175/MWR-D-13-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., G. J. Alaka Jr., and H. R. Winterbottom, 2021: The irreplaceable utility of sequential data assimilation for numerical weather prediction system development: Lessons learned from an experimental HWRF system. Wea. Forecasting, 36, 661677, https://doi.org/10.1175/WAF-D-20-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, J., G.-Y. Lien, K. Kondo, S. Otsuka, and T. Miyoshi, 2021: Reduced non-Gaussianity by 30 s rapid update in convective-scale numerical weather prediction. Nonlinear Processes Geophys., 28, 615626, https://doi.org/10.5194/npg-28-615-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., M. Wong, G. S. Romine, R. A. Sobash, and K. R. Fossell, 2020: Initial conditions for convection-allowing ensembles over the conterminous United States. Mon. Wea. Rev., 148, 26452669, https://doi.org/10.1175/MWR-D-19-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, and D. C. Dowell, 2021: Toward unifying short-term and next-day convection-allowing ensemble forecast systems with a continuously cycling 3-km ensemble Kalman filter over the entire conterminous United States. Wea. Forecasting, 36, 379405, https://doi.org/10.1175/WAF-D-20-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., J. Poterjoy, J. R. Carley, D. C. Dowell, G. S. Romine, and K. Ide, 2022: Comparing partial and continuously cycling ensemble Kalman filter data assimilation systems for convection-allowing ensemble forecast initialization. Wea. Forecasting, 37, 85112, https://doi.org/10.1175/WAF-D-21-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., M. Leutbecher, A. Weisheimer, T. Stockdale, L. Isaksen, and M. Bonavita, 2011: Representing model uncertainty: Stochastic parameterizations at ECMWF. ECMWF Newsletter, No. 129, ECMWF, Reading, United Kingdom, 1924.

    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. Weygandt, T. Smirnova, and B. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1, https://ams.confex.com/ams/24SLS/techprogram/paper_142055.htm.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and J. Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113, D18101, https://doi.org/10.1029/2007JD009284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trémolet, Y., 2006: Accounting for an imperfect model in 4D-Var. Quart. J. Roy. Meteor. Soc., 132, 24832504, https://doi.org/10.1256/qj.05.224.

  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Wong, M., G. Romine, and C. Snyder, 2020: Model improvement via systematic investigation of physics tendencies. Mon. Wea. Rev., 148, 671688, https://doi.org/10.1175/MWR-D-19-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, https://doi.org/10.1002/qj.2233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, R. J. Purser, B. A. Ballish, and J. Whiting, 2015: Variational correction of aircraft temperature bias in the NCEP’s GSI analysis system. Mon. Wea. Rev., 143, 37743803, https://doi.org/10.1175/MWR-D-14-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 325 0 0
Full Text Views 679 381 39
PDF Downloads 618 314 17