• Abulikemu, A., Y. Wang, R. Gao, Y. Wang, and X. Xu, 2019: A numerical study of convection initiation associated with a gust front in Bohai Bay region, North China. J. Geophys. Res. Atmos., 124, 13 84313 860, https://doi.org/10.1029/2019JD030883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachmann, K., C. Keil, and M. Weissmann, 2019: Impact of radar data assimilation and orography on predictability of deep convection. Quart. J. Roy. Meteor. Soc., 145, 117130, https://doi.org/10.1002/qj.3412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2018: Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sens., 10, 2038, https://doi.org/10.3390/rs10122038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 2007: The Convective Storm Initiation Project. Bull. Amer. Meteor. Soc., 88, 19391956, https://doi.org/10.1175/BAMS-88-12-1939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted AERI and Doppler lidar wind retrievals on short-term forecasts of the initiation and early evolution of thunderstorms. Mon. Wea. Rev., 147, 11491170, https://doi.org/10.1175/MWR-D-18-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S., X. Wang, D. Stensrud, and A. Johnson, 2018: Understanding the impact of radar and in-situ observations on the prediction of a nocturnal convection initiation event on 25 June 2013 using an ensemble-based multiscale data assimilation system. Mon. Wea. Rev., 146, 18371859, https://doi.org/10.1175/MWR-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S., X. Wang, and D. Stensrud, 2019: An evaluation of the impact of assimilating AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast of a nocturnal convection initiation event during the PECAN field campaign. Mon. Wea. Rev., 147, 27392764, https://doi.org/10.1175/MWR-D-18-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S., X. Wang, D. Stensrud, and D. D. Turner, 2020: Systematic evaluation of the impact of assimilating a network of ground-based remote sensing profilers for forecasts of nocturnal convection initiation during PECAN. Mon. Wea. Rev., 148, 47034728, https://doi.org/10.1175/MWR-D-20-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duc, L., K. Saito, and H. Seko, 2013: Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264278, https://doi.org/10.1175/MWR-2852.1.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasperoni, N. A., X. Wang, K. A. Brewster, and F. H. Carr, 2018: Assessing impacts of the high-frequency assimilation of surface observations for the forecast of convection initiation on 3 April 2014 within the Dallas–Fort Worth test bed. Mon. Wea. Rev., 146, 38453872, https://doi.org/10.1175/MWR-D-18-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night Field Project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and B. C. Ancell, 2016: Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation. Mon. Wea. Rev., 144, 41614182, https://doi.org/10.1175/MWR-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Liu, Y. Liu, H. Li, and J. C. Knievel, 2019: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res. Atmos., 124, 13701391, https://doi.org/10.1029/2018JD029668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., X. Wang, C. Kerr, A. Mahre, T. Yu, and D. Bodine, 2020: Impact of assimilating future clear-air radial velocity observations from phased array radar on a supercell thunderstorm forecast: An observing system simulation experiment study. Mon. Wea. Rev., 148, 38253845, https://doi.org/10.1175/MWR-D-19-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. Gonzalez–Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 29012917, https://doi.org/10.1175/MWR-D-10-05037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keclik, A. M., C. Evans, P. J. Roebber, and G. S. Romine, 2017: The influence of assimilated upstream, preconvective dropsonde observations on ensemble forecasts of convection initiation during the mesoscale predictability experiment. Mon. Wea. Rev., 145, 47474770, https://doi.org/10.1175/MWR-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, https://doi.org/10.1175/2010JAS3642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, https://doi.org/10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. Fengler, P. B. Chilson, K. L. Elmore, B. Argrow, D. L. Andra, and T. Lindley, 2018: On the use of unmanned aircraft for sampling mesoscale phenomena in the preconvective boundary layer. J. Atmos. Oceanic Technol., 35, 22652288, https://doi.org/10.1175/JTECH-D-18-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., D. J. McLaughlin, S. Frasier, M. Oue, E. Luke, and A. Sneddon, 2018: Advances and applications in low-power phased array X-band weather radars. 2018 IEEE Radar Conf. (RadarConf18), Oklahoma City, OK, Institute of Electrical and Electronics Engineers, 13591364, https://doi.org/10.1109/RADAR.2018.8378762.

    • Crossref
    • Export Citation
  • Kong, R., M. Xue, and C. Liu, 2018: Development of a hybrid En3DVar data assimilation system and comparisons with 3DVar and EnKF for radar data assimilation with observing system simulation experiments. Mon. Wea. Rev., 146, 175198, https://doi.org/10.1175/MWR-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leuenberger, D., A. Haefele, N. Omanovic, M. Fengler, G. Martucci, B. Calpini, O. Fuhrer, and A. Rossa, 2020: Improving high-impact numerical weather prediction with lidar and drone observations. Bull. Amer. Meteor. Soc., 101, E1036E1051, https://doi.org/10.1175/BAMS-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lippi, D. E., J. R. Carley, and D. T. Kleist, 2019: Improvements to the assimilation of Doppler radial winds for convection-permitting forecasts of a heavy rain event. Mon. Wea. Rev., 147, 36093632, https://doi.org/10.1175/MWR-D-18-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., M. Xue, and R. Kong, 2019: Direct assimilation of radar reflectivity data using 3DVAR: Treatment of hydrometeor background errors and OSSE tests. Mon. Wea. Rev., 147, 1729, https://doi.org/10.1175/MWR-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2014: Empirical examination of the factors regulating thunderstorm initiation. Mon. Wea. Rev., 142, 240258, https://doi.org/10.1175/MWR-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madaus, L. E., and G. J. Hakim, 2017: Constraining ensemble forecasts of discrete convective initiation with surface observations. Mon. Wea. Rev., 145, 25972610, https://doi.org/10.1175/MWR-D-16-0395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maejima, Y., and T. Miyoshi, 2020: Impact of the window length of four-dimensional local ensemble transform Kalman filter: A case of convective rain event. SOLA, 16, 3742, https://doi.org/10.2151/sola.2020-007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahre, A., T.-Y. Yu, and D. J. Bodine, 2020: A comparison of scan speedup strategies and their effect on rapid-scan weather radar data quality. J. Atmos. Oceanic Technol., 37, 19551972, https://doi.org/10.1175/JTECH-D-19-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Markowski, P., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, https://doi.org/10.1175/MWR3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRC, 2009: Observing Weather and Climate from the Ground Up—A Nationwide Network of Networks. National Academies Press, 250 pp., https://doi.org/10.17226/12540.

    • Crossref
    • Export Citation
  • Pan, S., J. Gao, D. J. Stensrud, X. Wang, and T. A. Jones, 2018: Assimilation of radar radial velocity and reflectivity, satellite cloud water path, and total precipitable water for convective-scale NWP in OSSEs. J. Atmos. Oceanic Technol., 35, 6789, https://doi.org/10.1175/JTECH-D-17-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2018: Initiation mechanisms of nocturnal convection without nearby surface boundaries over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 146, 30533078, https://doi.org/10.1175/MWR-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, J., G.-Y. Lien, K. Kondo, S. Otsuka, and T. Miyoshi, 2021: Reduced non-Gaussianity by 30 s rapid update in convective-scale numerical weather prediction. Nonlinear Processes Geophys., 28, 615626, https://doi.org/10.5194/npg-28-615-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröttle, J., M. Weissmann, L. Scheck, and A. Hutt, 2020: Assimilating visible and infrared radiances in idealized simulations of deep convection. Mon. Wea. Rev., 148, 43574375, https://doi.org/10.1175/MWR-D-20-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012. Mon. Wea. Rev., 143, 37003725, https://doi.org/10.1175/MWR-D-14-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J., and Coauthors, 2021: Oversampling reflectivity observations from a geostationary precipitation radar satellite: Impact on typhoon forecasts within a perfect model OSSE framework. J. Adv. Model. Earth Syst., 13, e2020MS002332, https://doi.org/10.1029/2020MS002332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., G. S. Romine, D. A. Ahijevych, R. J. Trapp, R. S. Schumacher, M. C. Coniglio, and D. J. Stensrud, 2015: Mesoscale thermodynamic influences on convection initiation near a surface dryline in a convection-permitting ensemble. Mon. Wea. Rev., 143, 37263753, https://doi.org/10.1175/MWR-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q.-W., and M. Xue, 2018: A high-resolution modeling study of the 19 June 2002 convective initiation case during IHOP_2002: Localized forcing by horizontal convective rolls. Adv. Atmos. Sci., 35, 12431253, https://doi.org/10.1007/s00376-018-7218-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the international H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253278, https://doi.org/10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus, R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and C. S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 14661483, https://doi.org/10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 11841206, https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., H. Lu, S. Gao, M. Xue, and M. Tong, 2008: Time-expanded sampling for ensemble Kalman filter: Assimilation experiments with simulated radar observations. Mon. Wea. Rev., 136, 26512667, https://doi.org/10.1175/2007MWR2185.1.

    • Search Google Scholar
    • Export Citation
  • Yu, T.-Y., M. B. Orescanin, C. D. Curtis, D. S. Zrnić, and D. E. Forsyth, 2007: Beam multiplexing using the phased-array weather radar. J. Atmos. Oceanic Technol., 24, 616626, https://doi.org/10.1175/JTECH2052.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., J. Gao, T. A. Jones, and J. Hu, 2021: Impact of assimilating high‐resolution atmospheric motion vectors on convective scale short‐term forecasts: 1. Observing System Simulation Experiment (OSSE). J. Adv. Model. Earth Syst., 13, e2021MS002484, https://doi.org/10.1029/2021MS002484.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., S. E. Koch, R. D. Palmer, M. E. Weber, K. D. Hondl, G. M. McFarquhar, and M. H. Jain, 2019: How an agile-beam polarimetric phased-array radar can add to the observing capabilities of the NWS. Phased Array Radar Symp., Phoenix, AZ, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/351777.

All Time Past Year Past 30 Days
Abstract Views 185 185 15
Full Text Views 116 116 7
PDF Downloads 134 134 11

Impacts of Assimilating Future Clear-Air Radial Velocity Observations from Phased Array Radar on Convection Initiation Forecasts: An Observing System Simulation Experiment Study

Yongjie HuangaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yongjie Huang in
Current site
Google Scholar
PubMed
Close
,
Xuguang WangaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
,
Andrew MahreaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
bAdvanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Andrew Mahre in
Current site
Google Scholar
PubMed
Close
,
Tian-You YuaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
bAdvanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
cSchool of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

Search for other papers by Tian-You Yu in
Current site
Google Scholar
PubMed
Close
, and
David BodineaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
bAdvanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by David Bodine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Phased-array radar (PAR) technology can potentially provide high-quality clear-air radial velocity observations at a high spatiotemporal resolution, usually ∼1 min or less. These observations are hypothesized to partially fill the gaps in current operational observing systems with relatively coarse-resolution surface mesonet observations and the lack of high-resolution upper-air observations especially in planetary boundary layer. In this study, observing system simulation experiments are conducted to investigate the potential value of assimilating PAR observations of clear-air radial velocity to improve the forecast of convection initiation (CI) along small-scale boundary layer convergence zones. Both surface-based and elevated CIs driven by meso-γ-scale boundary layer convergence are tested. An ensemble Kalman filter method is used to assimilate synthetic surface mesonet observations and PAR clear-air radial velocity observations. Results show that assimilating only surface mesonet observations fails to predict either surface-based or elevated CI processes. Assimilating clear-air radial velocity observations in addition to surface mesonet observations can capture both surface-based and elevated CI processes successfully. Such an improvement benefits from the better analyses of boundary layer convergence, resulting from the assimilation of clear-air radial velocity observations. Additional improvement is observed with more frequent assimilation. Assimilating clear-air radial velocity observations only from the one radar results in analysis biases of cross-beam winds and CI location biases, and assimilating additional radial velocity observations from the second radar at an appropriate position can reduce these biases while sacrificing the CI timing. These results suggest the potential of assimilating clear-air radial velocity observations from PAR to improve the forecast of CI processes along boundary layer convergence zones.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

Abstract

Phased-array radar (PAR) technology can potentially provide high-quality clear-air radial velocity observations at a high spatiotemporal resolution, usually ∼1 min or less. These observations are hypothesized to partially fill the gaps in current operational observing systems with relatively coarse-resolution surface mesonet observations and the lack of high-resolution upper-air observations especially in planetary boundary layer. In this study, observing system simulation experiments are conducted to investigate the potential value of assimilating PAR observations of clear-air radial velocity to improve the forecast of convection initiation (CI) along small-scale boundary layer convergence zones. Both surface-based and elevated CIs driven by meso-γ-scale boundary layer convergence are tested. An ensemble Kalman filter method is used to assimilate synthetic surface mesonet observations and PAR clear-air radial velocity observations. Results show that assimilating only surface mesonet observations fails to predict either surface-based or elevated CI processes. Assimilating clear-air radial velocity observations in addition to surface mesonet observations can capture both surface-based and elevated CI processes successfully. Such an improvement benefits from the better analyses of boundary layer convergence, resulting from the assimilation of clear-air radial velocity observations. Additional improvement is observed with more frequent assimilation. Assimilating clear-air radial velocity observations only from the one radar results in analysis biases of cross-beam winds and CI location biases, and assimilating additional radial velocity observations from the second radar at an appropriate position can reduce these biases while sacrificing the CI timing. These results suggest the potential of assimilating clear-air radial velocity observations from PAR to improve the forecast of CI processes along boundary layer convergence zones.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

Supplementary Materials

    • Supplemental Materials (PDF 476 KB)
Save