• Agee, E., and S. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, C., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 7297, https://doi.org/10.1175/MWR-2855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., A. McGee, R. Ducharme, R. M. Wakimoto, and J. Wurman, 2012: The LaGrange tornado during VORTEX2. Part II: Photogrammetric analysis of the tornado combined with dual-Doppler radar data. Mon. Wea. Rev., 140, 29392958, https://doi.org/10.1175/MWR-D-11-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, V., and N. Dotzek, 2010: Reconstruction of near-surface tornado wind fields from forest damage. J. Appl. Meteor. Climatol., 49, 15171537, https://doi.org/10.1175/2010JAMC2254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, and A. E. Pietrycha, 2008: In situ observations of the 21 April 2007 Tulia, Texas tornado. Electron. J. Severe Storms Meteor., 3 (3), https://ejssm.org/archives/wp-content/uploads/2021/09/vol3-3.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 2013: A comparison of wind speed and forest damage associated with tornadoes in northern Arizona. Wea. Forecasting, 28, 408417, https://doi.org/10.1175/WAF-D-12-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 29392951, https://doi.org/10.1175/1520-0477(2000)081<2939:OOTAOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003a: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984, https://doi.org/10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2003b: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis. Mon. Wea. Rev., 131, 29542967, https://doi.org/10.1175/1520-0493(2003)131<2954:MDROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, Doppler radar observations.Mon. Wea. Rev., 132, 23252337, https://doi.org/10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. L. Pazmany, 2007a: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543, https://doi.org/10.1175/MWR3349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, R. L. Tanamachi, S. Frasier, and A. L. Pazmany, 2007b: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135, 475506, https://doi.org/10.1175/MWR3295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Synder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, J. C. Snyder, and J. B. Houser, 2016: Doppler radar observations of anticyclonic tornadoes in cyclonically rotating, right-moving supercells. Mon. Wea. Rev., 144, 15911616, https://doi.org/10.1175/MWR-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2018: The multiple-vortex structure of the El Reno, Oklahoma, tornado on 31 May 2013. Mon. Wea. Rev., 146, 24832502, https://doi.org/10.1175/MWR-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2019: Tornadogenesis and early tornado evolution in the El Reno, Oklahoma, supercell on 31 May 2013. Mon. Wea. Rev., 147, 20452066, https://doi.org/10.1175/MWR-D-18-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, https://doi.org/10.1175/WAF-D-11-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., T. Maruyama, R. D. Palmer, C. J. Fulton, H. B. Bluestein, and D. C. Lewellen, 2016: Sensitivity of tornado dynamics to soil debris loading. J. Atmos. Sci., 73, 27832801, https://doi.org/10.1175/JAS-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., B. A. Flickinger, E. Forren, D. M. Schultz, D. Sirmans, P. L. Spencer, V. T. Wood, and C. L. Ziegler, 2005: Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Wea. Forecasting, 20, 314, https://doi.org/10.1175/WAF-832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471, https://doi.org/10.1175/1520-0434(2002)017<0456:ROOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrisman, J., 2014: Multiple Elevation Scan Option for SAILS (MESO-SAILS). NWS/Radar Operations Center, 27 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/MESO-SAILS_Description_Briefing_Jan_2014.pdf.

    • Crossref
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davenport, A. G., 1960: Rationale for determining design wind velocities. J. Struct. Div., Amer. Soc. Civ. Eng., 86, 3968, https://doi.org/10.1061/JSDEAG.0000521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., A. E. Mercer, J. Choi, and J. S. Allen, 2011: Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Amer. Meteor. Soc., 92, 433441, https://doi.org/10.1175/2010BAMS3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, https://doi.org/10.1175/MWR2934.1.

    • Search Google Scholar
    • Export Citation
  • Dunn, L. B., and S. V. Vasiloff, 2001: Tornadogenesis and operational considerations of the 11 August 1999 Salt Lake City tornado as seen from two different Doppler radars. Wea. Forecasting, 16, 377398, https://doi.org/10.1175/1520-0434(2001)016<0377:TAOCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Environment Canada, 2021: Enhanced Fujita scale damage indicators and degrees of damage, chapter 27: C-2 Trees (C-T). Accessed 15 December 2021, https://www.canada.ca/en/environment-climate-change/services/seasonal-weather-hazards/publications/enhanced-fujita-scale-damage-indicators/chapter-27.html.

    • Crossref
    • Export Citation
  • Feuerstein, B., N. Dotzek, and J. Grieser, 2005: Assessing a tornado climatology from global tornado intensity distributions. J. Climate, 18, 585596, https://doi.org/10.1175/JCLI-3285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., 1998: Topographic influences on tornadoes in Pennsylvania. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 269272.

    • Crossref
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, https://doi.org/10.1175/MWR-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, L. J. Wicker, D. C. Dowell, and M. R. Kramar, 2009: An example of the use of mobile, Doppler radar data for tornado verification. Wea. Forecasting, 24, 884891, https://doi.org/10.1175/2008WAF2222147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, https://doi.org/10.1175/MWR-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuhrmann, C. M., C. E. Konrad II, M. M. Kovach, J. T. McLeod, W. G. Schmitz, and P. G. Dixon, 2014: Ranking of tornado outbreaks across the United States and their climatological characteristics. Wea. Forecasting, 29, 684701, https://doi.org/10.1175/WAF-D-13-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1989: The Teton–Yellowstone tornado of 21 July 1989. Mon. Wea. Rev., 117, 19131940, https://doi.org/10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbs, J. G., 2016: A skill assessment of techniques for real-time diagnosis and short-term prediction of tornado intensity using the WSR-88D. J. Oper. Meteor., 4, 170181, https://doi.org/10.15191/nwajom.2016.0413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbs, J. G., and B. R. Bowers, 2019: Techniques and thresholds of significance for using WSR-88D velocity data to anticipate significant tornadoes. J. Oper. Meteor., 7, 117137, https://doi.org/10.15191/nwajom.2019.0709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, C. M., and C. J. Peterson, 2017: Estimating enhanced Fujita scale levels based on forest damage severity. Wea. Forecasting, 32, 243252, https://doi.org/10.1175/WAF-D-16-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, C. B., D. J. Bodine, J. M. Kurdzo, A. Mahre, and R. D. Palmer, 2019: High-temporal resolution observations of the 27 May 2015 Canadian, Texas, tornado using the Atmospheric Imaging Radar. Mon. Wea. Rev., 147, 873891, https://doi.org/10.1175/MWR-D-18-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, A. P., A. J. Riordan, and E. C. Franklin, 2006: A simple model for simulating tornado damage in forests. J. Appl. Meteor. Climatol., 45, 15971611, https://doi.org/10.1175/JAM2413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 41014130, https://doi.org/10.1175/MWR-D-15-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. B., N. McGinnis, K. M. Butler, H. B. Bluestein, J. C. Snyder, and M. M. French, 2020: Statistical and empirical relationships between tornado intensity and both topography and land cover using rapid-scan radar observations and a GIS. Mon. Wea. Rev., 148, 43134338, https://doi.org/10.1175/MWR-D-19-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IEM, 2020: National Weather Service Raw Text Product. Iowa State University, Iowa Environmental Mesonet, accessed 5 May 2020, https://mesonet.agron.iastate.edu/wx/afos/p.php?pil=PNSMEG&e=201904151837.

    • Crossref
    • Export Citation
  • Jedlovec, G. J., U. Nair, and S. L. Haines, 2006: Detection of storm damage tracks with EOS data. Wea. Forecasting, 21, 249267, https://doi.org/10.1175/WAF923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus Jr., and C. A. Finley, 2010: Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 25702588, https://doi.org/10.1175/2010MWR3201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., W. A. Gallus Jr., B. D. Lee, and C. A. Finley, 2013: Analysis of tornado-induced tree fall using aerial photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, tornadoes of 2011. J. Appl. Meteor. Climatol., 52, 10491068, https://doi.org/10.1175/JAMC-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and J. G. LaDue, 2015: The relationship between automated low-level velocity calculations from the WSR-88D and maximum tornado intensity determined from damage surveys. Wea. Forecasting, 30, 11251139, https://doi.org/10.1175/WAF-D-14-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and K. M. de Beurs, 2017: Landsat identification of tornado damage by land cover and an evaluation of damage recovery in forests. J. Appl. Meteor. Climatol., 56, 965987, https://doi.org/10.1175/JAMC-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kis, A. K., and J. M. Straka, 2010: Nocturnal tornado climatology. Wea. Forecasting, 25, 545561, https://doi.org/10.1175/2009WAF2222294.1.

  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. A. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., and J. Wurman, 2013: The three-dimensional structure and evolution of a tornado boundary layer. Wea. Forecasting, 28, 15521561, https://doi.org/10.1175/WAF-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaDue, J. G., 2016: About the ASCE Tornado Wind Speed Estimation Standards Committee. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 6B.1, https://ams.confex.com/ams/28SLS/webprogram/Paper300684.html.

    • Crossref
    • Export Citation
  • LaDue, J. G., K. Ortega, B. Smith, G. Stumpf, and D. M. Kingfield, 2012: A comparison of high resolution tornado surveys to Doppler radar observed mesocyclone parameters: 2011–2012 case studies. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 6.3, https://ams.confex.com/ams/26SLS/webprogram/Paper212627.html.

    • Crossref
    • Export Citation
  • LaDue, J. G., J. Wurman, M. Levitan, F. T. Lombardo, C. D. Karstens, J. Robinson, and W. Coulbourne, 2018: Advances in development of the ASCE/SEI/AMS standard for wind speed estimation in tornadoes and other windstorms. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 29, https://ams.confex.com/ams/29SLS/webprogram/Paper348726.html.

    • Crossref
    • Export Citation
  • Lee, B. D., C. A. Finley, and T. A. Samaras, 2011: Surface analysis near and within the Tipton, Kansas, tornado on 29 May 2008. Mon. Wea. Rev., 139, 370386, https://doi.org/10.1175/2010MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393, https://doi.org/10.1175/JAS3489.1.

    • Search Google Scholar
    • Export Citation
  • Lepore, C., and M. K. Tippett, 2020: Environmental controls on the climatological scaling of tornado frequency with intensity. Mon. Wea. Rev., 148, 44674478, https://doi.org/10.1175/MWR-D-20-0138.1.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., B. Gong, and W. S. Lewellen, 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262, https://doi.org/10.1175/2008JAS2686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., D. C. Lewellen, and R. I. Sykes, 1997: Large-eddy simulation of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581605, https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, F. T., D. B. Roueche, and D. O. Prevatt, 2015: Comparison of two methods of near-surface wind speed estimation in the 22 May, 2011 Joplin, Missouri tornado. J. Wind Eng. Ind. Aerodyn., 138, 8797, https://doi.org/10.1016/j.jweia.2014.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., R. Castro, E. Lenning, M. T. Friedlein, B. S. Borchardt, A. W. Clayton, and K. R. Knupp, 2019: A multi-platform reanalysis of the Kankakee Valley tornado cluster on 30 June 2014. Electron. J. Severe Storms Meteor., 14 (3), https://ejssm.org/archives/2019/vol-14-3-2019/.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., B. T. Goudeau, and K. R. Knupp, 2020a: Close-range radar observations and high-resolution damage survey of a large, intense tornado in a forested area during the VORTEX-SE Meso18-19 field campaign. 20th Symp. on Meteorological Observation and Instrumentation, Boston, MA, Amer. Meteor. Soc., 3.1, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/369478.

    • Crossref
    • Export Citation
  • Lyza, A. W., T. A. Murphy, B. T. Goudeau, P. T. Pangle, K. R. Knupp, and R. A. Wade, 2020b: Observed near-storm environment variations across the southern Cumberland Plateau system in northeastern Alabama. Mon. Wea. Rev., 148, 14651482, https://doi.org/10.1175/MWR-D-19-0190.1.

    • Search Google Scholar
    • Export Citation
  • Mahre, A., J. M. Kurdzo, D. J. Bodine, C. B. Griffin, R. D. Palmer, and T.-Y. Yu, 2018: Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 tornado at high spatiotemporal resolution using the Atmospheric Imaging Radar. Mon. Wea. Rev., 146, 21032124, https://doi.org/10.1175/MWR-D-17-0256.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, J. Wurman, and P. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, https://doi.org/10.1175/2008MWR2442.1.

    • Search Google Scholar
    • Export Citation
  • McKeown, K. E., M. M. French, K. S. Tuftedal, D. M. Kingfield, H. B. Bluestein, D. W. Reif, and Z. B. Wienhoff, 2020: Rapid-scan and polarimetric radar observations of the dissipation of a violent tornado on 9 May 2016 near Sulphur, Oklahoma. Mon. Wea. Rev., 148, 39513971, https://doi.org/10.1175/MWR-D-20-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., J. R. Bell, T. A. Cole, and J. E. Burks, 2014: Satellite-based identification of tornado damage tracks from the 27 April 2011 severe weather outbreak. J. Oper. Meteor., 2, 191208, https://doi.org/10.15191/nwajom.2014.0216.

    • Search Google Scholar
    • Export Citation
  • NWS, 2021: JetStream Max: Volume Coverage Patterns (VCPs). Accessed 1 October 2021, https://www.weather.gov/jetstream/vcp_max.

    • Crossref
    • Export Citation
  • OFCM, 2017: WSR-88D meteorological observations, Part C: WSR-88D products and algorithms. Federal Meteorological Handbook 11, Tech. Doc. FCM-H11C-2017, 396 pp., https://www.icams-portal.gov/resources/ofcm/fmh/FMH11/fmh11partC.pdf.

    • Crossref
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359361.

    • Crossref
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile Rapid-Scanning X-band Polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rankine, W. J. M., 1901: A Manual of Applied Mechanics. 16th ed. Charles Griff and Company, 680 pp.

    • Crossref
    • Export Citation
  • Rhee, D. M., and F. T. Lombardo, 2018: Improved near-surface wind speed characterization using damage patterns. J. Wind Eng. Ind. Aerodyn., 180, 288297, https://doi.org/10.1016/j.jweia.2018.07.017.

    • Search Google Scholar
    • Export Citation
  • Rhee, D. M., F. T. Lombardo, and J. Kadowski, 2021: Semi-automated tree-fall pattern identification using image processing technique: Application to Alonsa, MB tornado. J. Wind Eng. Ind. Aerodyn., 208, 104399, https://doi.org/10.1016/j.jweia.2020.104399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satrio, M. A., D. J. Bodine, A. E. Reinhart, T. Maruyama, and F. T. Lombardo, 2020: Understanding how complex terrain impacts tornado dynamics using a suite of high-resolution numerical simulations. J. Atmos. Sci., 77, 32773300, https://doi.org/10.1175/JAS-D-19-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schelleng, J. C., C. R. Burrows, and E. B. Ferrell, 1933: Ultra-short-wave propagation. Proc. IRE, 21, 427463, https://doi.org/10.1109/JRPROC.1933.227639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J. , and Coauthors, 2012: Dual-polarization tornadic debris signatures. Part I: Examples and utility in an operational setting. Electron. J. Oper. Meteor., 13, 120137, http://nwafiles.nwas.org/ej/pdf/2012-EJ9.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skow, K. D., and C. Cogil, 2017: A high-resolution aerial survey and radar analysis of quasi-linear convective system surface vortex damage paths from 31 August 2014. Wea. Forecasting, 32, 441467, https://doi.org/10.1175/WAF-D-16-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, D. A. Speheger, A. R. Dean, C. D. Karstens, and A. K. Anderson-Frey, 2020a: WSR-88D tornado intensity estimates. Part I: Real-time probabilities of peak tornado wind speeds. Wea. Forecasting, 35, 24792492, https://doi.org/10.1175/WAF-D-20-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, D. A. Speheger, A. R. Dean, C. D. Karstens, and A. K. Anderson-Frey, 2020b: WSR-88D tornado intensity estimates. Part II: Real-time applications to tornado warning time scales. Wea. Forecasting, 35, 24932506, https://doi.org/10.1175/WAF-D-20-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, Z. B. Wienhoff, C. M. Kuster, and D. W. Reif, 2020: An analysis of an ostensible anticyclonic tornado from 9 May 2016 using high-resolution, rapid-scan radar data. Wea. Forecasting, 35, 16851712, https://doi.org/10.1175/WAF-D-20-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., and W. S. Ashley, 2018: Finescale assessment of mobile home tornado vulnerability in the central and southeast United States. Wea. Climate Soc., 10, 797812, https://doi.org/10.1175/WCAS-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and Coauthors, 2017: Tornado damage rating probabilities derived from WSR-88D data. Wea. Forecasting, 32, 15091528, https://doi.org/10.1175/WAF-D-17-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, W.-C. Lee, M. Bell, and A. Pazmany, 2007: Ground-Based Velocity Track Display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999. Mon. Wea. Rev., 135, 783800, https://doi.org/10.1175/MWR3325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, M. Xue, W.-C. Lee, K. A. Orzel, S. J. Frazier, and R. M. Wakimoto, 2013: Near-surface vortex structure in a tornado and in a sub-tornado-strength convective-storm vortex observed by a mobile, W-band radar during VORTEX2. Mon. Wea. Rev., 141, 36613690, https://doi.org/10.1175/MWR-D-12-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, https://doi.org/10.1175/JAMC-D-15-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172231, https://doi.org/10.1175/JAMC-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, O. H., Jr., and B. Vonnegut, 1976: Luminous electrical phenomena in Huntsville, Alabama, tornadoes on April 3, 1974. NASA Tech. Memo. NASA TM X-73301, 37 pp., https://ntrs.nasa.gov/api/citations/19760020697/downloads/19760020697.pdf.

    • Crossref
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258, https://doi.org/10.1175/2010MWR3568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, W.-C. Lee, N. T. Atkins, and J. Wurman, 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 33973418, https://doi.org/10.1175/MWR-D-12-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, https://doi.org/10.1175/MWR-D-15-0367.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., Z. Wienhoff, H. B. Bluestein, and D. Reif, 2018: The Dodge City tornadoes on 24 May 2016: Damage survey, photogrammetric analysis combined with mobile polarimetric radar data. Mon. Wea. Rev., 146, 37353771, https://doi.org/10.1175/MWR-D-18-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., Z. Wienhoff, H. B. Bluestein, D. J. Bodine, and J. M. Kurdzo, 2020: Mobile radar observations of the evolving debris field compared with a damage survey of the Shawnee, Oklahoma, tornado of 19 May 2013. Mon. Wea. Rev., 148, 17791803, https://doi.org/10.1175/MWR-D-19-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wienhoff, Z. B., H. B. Bluestein, D. W. Reif, R. M. Wakimoto, L. J. Wicker, and J. M. Kurdzo, 2020: Analysis of debris signature characteristics and evolution in the 24 May 2016 Dodge City, Kansas, tornadoes. Mon. Wea. Rev., 148, 50635086, https://doi.org/10.1175/MWR-D-20-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1980: Representativeness of wind observations at airports. Bull. Amer. Meteor. Soc., 61, 962971, https://doi.org/10.1175/1520-0477(1980)061<0962:ROWOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., R. A. Brown, and D. C. Dowell, 2009: Simulated WSR-88D velocity and reflectivity signatures of numerically modeled tornadoes. J. Atmos. Oceanic Technol., 26, 876893, https://doi.org/10.1175/2008JTECHA1181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WSEC, 2006: A recommendation for an Enhanced Fujita scale (EF-scale). Wind Science and Engineering Center, Texas Tech University, 111 pp., http://www.depts.ttu.edu/nwi/Pubs/EnhancedFujitaScale/EFScale.pdf.

    • Crossref
    • Export Citation
  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17, 473505, https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and C. Alexander, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes. Mon. Wea. Rev., 133, 97119, https://doi.org/10.1175/MWR-2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007a: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007b: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405, https://doi.org/10.1175/MWR3404.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455, https://doi.org/10.1175/2010MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, and P. Robinson, 2013: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship. Bull. Amer. Meteor. Soc., 94, 835846, https://doi.org/10.1175/BAMS-D-12-00114.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1048 769 37
Full Text Views 337 273 19
PDF Downloads 376 297 20

Damage Analysis and Close-Range Radar Observations of the 13 April 2019 Greenwood Springs, Mississippi, Tornado during VORTEX-SE Meso18-19

Anthony W. LyzaaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Anthony W. Lyza in
Current site
Google Scholar
PubMed
Close
,
Barrett T. GoudeaucDepartment of Atmospheric and Earth Science, Severe Weather Institute–Radar and Lightning Laboratories (SWIRLL), University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Barrett T. Goudeau in
Current site
Google Scholar
PubMed
Close
, and
Kevin R. KnuppcDepartment of Atmospheric and Earth Science, Severe Weather Institute–Radar and Lightning Laboratories (SWIRLL), University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Kevin R. Knupp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A tornado outbreak occurred across the Southeast United States on 13–14 April 2019, during the Verification of the Origins of Rotation in Tornadoes Experiment–Southeast (VORTEX-SE) Meso18-19 experiment. Among the most noteworthy events was a pair of large tornadoes in Monroe County, Mississippi, near the Columbus Air Force Base (GWX) Weather Surveillance Radar–1988 Doppler (WSR-88D). The second tornado, near the Greenwood Springs community, formed within the “no data” region near the radar and passed about 900 m to its east, rapidly strengthening into an intense tornado. This tornado produced forest devastation and electrical infrastructure damage up to at least EF4 intensity. The maximum radial velocity from GWX was 81.5 m s−1 (182 mph) in a resolution volume centered at 56 m (183 ft) above radar level. This paper presents a damage survey of the Greenwood Springs tornado and compares this assessment to the GWX data. A displacement of the maximum forest damage from the maximum radial velocity, despite the radar beam sampling <100 m ARL, is documented, as well as other likely effects of debris loading by the tornado on the observed radar signatures. The radar observations are placed into context with past mobile radar studies to illustrate the unique nature of this dataset. The relationship between radar data and damage observations, the implications for tornado structure in rough terrain and land cover, and the use of forest damage and radar data in tornado intensity estimation are discussed.

Significance Statement

This study showcases radar and damage observations of an intense tornado in a forested region of Mississippi. The formation of the tornado within 1 km of a WSR-88D allowed for near-surface radar observations to be collected as significant tree destruction was occurring. Doppler velocities below 60 m above radar level (ARL), near tree canopy top, exceeded 80 m s−1. Tree damage patterns were complicated while the tornado was near maximum intensity. The most severe tree damage was notably displaced from the highest radar-observed velocities, despite the radar sampling as low as 45 m ARL. These findings highlight challenges in utilizing radar data to estimate tornado intensity and structure, particularly in a region of relatively high surface and terrain roughness.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anthony W. Lyza, anthony.lyza@noaa.gov

Abstract

A tornado outbreak occurred across the Southeast United States on 13–14 April 2019, during the Verification of the Origins of Rotation in Tornadoes Experiment–Southeast (VORTEX-SE) Meso18-19 experiment. Among the most noteworthy events was a pair of large tornadoes in Monroe County, Mississippi, near the Columbus Air Force Base (GWX) Weather Surveillance Radar–1988 Doppler (WSR-88D). The second tornado, near the Greenwood Springs community, formed within the “no data” region near the radar and passed about 900 m to its east, rapidly strengthening into an intense tornado. This tornado produced forest devastation and electrical infrastructure damage up to at least EF4 intensity. The maximum radial velocity from GWX was 81.5 m s−1 (182 mph) in a resolution volume centered at 56 m (183 ft) above radar level. This paper presents a damage survey of the Greenwood Springs tornado and compares this assessment to the GWX data. A displacement of the maximum forest damage from the maximum radial velocity, despite the radar beam sampling <100 m ARL, is documented, as well as other likely effects of debris loading by the tornado on the observed radar signatures. The radar observations are placed into context with past mobile radar studies to illustrate the unique nature of this dataset. The relationship between radar data and damage observations, the implications for tornado structure in rough terrain and land cover, and the use of forest damage and radar data in tornado intensity estimation are discussed.

Significance Statement

This study showcases radar and damage observations of an intense tornado in a forested region of Mississippi. The formation of the tornado within 1 km of a WSR-88D allowed for near-surface radar observations to be collected as significant tree destruction was occurring. Doppler velocities below 60 m above radar level (ARL), near tree canopy top, exceeded 80 m s−1. Tree damage patterns were complicated while the tornado was near maximum intensity. The most severe tree damage was notably displaced from the highest radar-observed velocities, despite the radar sampling as low as 45 m ARL. These findings highlight challenges in utilizing radar data to estimate tornado intensity and structure, particularly in a region of relatively high surface and terrain roughness.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anthony W. Lyza, anthony.lyza@noaa.gov
Save