• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K., 2003: Phase-correcting data assimilation and application to storm-scale numerical weather prediction. Part I: Method description and simulation testing. Mon. Wea. Rev., 131, 480492, https://doi.org/10.1175/1520-0493(2003)131<0480:PCDAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flora, M. L., P. S. Skinner, C. K. Potvin, A. E. Reinhart, T. A. Jones, N. Yussouf, and K. H. Knopfmeier, 2019: Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental Warn-on-Forecast System. Wea. Forecasting, 34, 17211739, https://doi.org/10.1175/WAF-D-19-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grooms, I., and G. Robinson, 2021: A hybrid particle-ensemble Kalman filter for problems with medium nonlinearity. PLOS ONE, 16, e0248266, https://doi.org/10.1371/journal.pone.0248266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., P. Skinner, N. Yussouf, K. Knopfmeier, A. Reinhart, and D. Dowell, 2019: Forecasting high-impact weather in landfalling tropical cyclones using a Warn-on-Forecast System. Bull. Amer. Meteor. Soc., 100, 14051417, https://doi.org/10.1175/BAMS-D-18-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and Coauthors, 2020: Assimilation of GOES-16 radiances and retrievals into the Warn-on-Forecast System. Mon. Wea. Rev., 148, 18291859, https://doi.org/10.1175/MWR-D-19-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., and X. Wang, 2020: Ensemble-based targeted observation method applied to radar radial velocity observations on idealized supercell low-level rotation forecasts: A proof of concept. Mon. Wea. Rev., 148, 877890, https://doi.org/10.1175/MWR-D-19-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. T. Dawson II, and J. M. Straka, 2020: Bin-emulating hail melting in three-moment bulk microphysics. J. Atmos. Sci., 77, 33613385, https://doi.org/10.1175/JAS-D-19-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., B. Woods, T. Auligné, and R. N. Hoffman, 2014: Application of feature calibration and alignment to high-resolution analysis: Examples using observations sensitive to cloud and water vapor. Mon. Wea. Rev., 142, 686702, https://doi.org/10.1175/MWR-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., B. Woods, R. N. Hoffman, and T. Auligné, 2015: Correcting for position errors in variational data assimilation. Mon. Wea. Rev., 143, 13681381, https://doi.org/10.1175/MWR-D-14-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polak, E., and G. Ribière, 1969: Note sur la convergence de méthodes de directions conjuguées. ESAIM: Math. Modell. Numer. Anal., 3, 3543, http://eudml.org/doc/193115.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., 2022: Regularization and tempering for a moment-matching localized particle filter. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.4328, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2020: Assessing systematic impacts of PBL schemes on storm evolution in the NOAA Warn-on-Forecast System. Mon. Wea. Rev., 148, 25672590, https://doi.org/10.1175/MWR-D-19-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast System. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2013: The impact of covariance localization for radar data on EnKF analyses of a developing MCS: Observing system simulation experiments. Mon. Wea. Rev., 141, 36913709, https://doi.org/10.1175/MWR-D-12-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-On-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratman, D. R., and K. A. Brewster, 2017: Sensitivities of 1-km forecasts of 24 May 2011 tornadic supercells to microphysics parameterizations. Mon. Wea. Rev., 145, 26972721, https://doi.org/10.1175/MWR-D-16-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratman, D. R., C. K. Potvin, and L. J. Wicker, 2018: Correcting storm displacement errors in ensemble using the feature alignment technique (FAT). Mon. Wea. Rev., 146, 21252145, https://doi.org/10.1175/MWR-D-17-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square-root Kalman filter for evaluating impact of data from radar networks on thunderstorm analysis and forecast. J. Atmos. Oceanic Technol., 23, 4666, https://doi.org/10.1175/JTECH1835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, Y., 2019: A multiscale alignment method for ensemble filtering with displacement errors. Mon. Wea. Rev., 147, 45534565, https://doi.org/10.1175/MWR-D-19-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517538, https://doi.org/10.1175/2009MWR2925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., T. A. Jones, and P. S. Skinner, 2020: Probabilistic high-impact rainfall forecasts from landfalling tropical cyclones using Warn-on-Forecast System. Quart. J. Roy. Meteor. Soc., 146, 20502065, https://doi.org/10.1002/qj.3779.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 330 329 4
Full Text Views 174 174 8
PDF Downloads 179 179 7

Testing the Feature Alignment Technique (FAT) in an Ensemble-Based Data Assimilation and Forecast System with Multiple-Storm Scenarios

Derek R. StratmanaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Derek R. Stratman in
Current site
Google Scholar
PubMed
Close
and
Corey K. PotvinbNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Corey K. Potvin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Storm displacement errors can arise from a number of potential sources of error within a data assimilation (DA) and forecast system. Conversely, storm displacement errors can cause issues for storm-scale, ensemble-based systems using an ensemble Kalman filter (EnKF), such as NSSL’s Warn-on-Forecast System (WoFS). A previous study developed a fully grid-based feature alignment technique (FAT) to mitigate these phase errors and their impacts. However, that study developed and tested the FAT for single-storm cases. This study advances that work by implementing an object-based merging and matching technique into the FAT and tests the updated FAT in more complex scenarios of multiple storms. Ensemble-based experiments are conducted with and without the FAT for each of the scenarios. The experiments’ analyses and forecasts of storm-related fields are then evaluated using subjective and objective methods. Results from these idealized multiple-storm experiments continue to reveal the potential benefits of correcting storm displacement errors. For example, running the FAT even once can mitigate the “spinup” period experienced by the no-FAT experiments. The new results also show that running the FAT prior to every DA cycling step generally leads to more skillful forecasts at the smaller scales, especially in earlier-initialized forecasts. However, repeatedly running the FAT prior to every DA step can eventually lead to deterioration in analyses and forecasts. Potential solutions to this problem include using longer cycling intervals and running the FAT prior to DA less often. Additional ways to improve the FAT along with other results are presented and discussed.

Significance Statement

The purpose of this work is to explore the impact of correcting storm displacements on analyses and forecasts of storms using an ensemble-based data assimilation and forecast system in an idealized framework. Storm displacement errors are a common problem in current operational and experimental storm-scale forecast systems, so understanding their impact on these systems and providing a method to help mitigate them is important. Results from this study indicate that correcting storm displacement errors with the feature alignment technique can greatly improve analyses and forecasts in multiple-storm scenarios. Future work will focus on exploring the impact of correcting storm displacement errors in a real-data, storm-scale data assimilation and forecast system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Derek R. Stratman, derek.stratman@noaa.gov

Abstract

Storm displacement errors can arise from a number of potential sources of error within a data assimilation (DA) and forecast system. Conversely, storm displacement errors can cause issues for storm-scale, ensemble-based systems using an ensemble Kalman filter (EnKF), such as NSSL’s Warn-on-Forecast System (WoFS). A previous study developed a fully grid-based feature alignment technique (FAT) to mitigate these phase errors and their impacts. However, that study developed and tested the FAT for single-storm cases. This study advances that work by implementing an object-based merging and matching technique into the FAT and tests the updated FAT in more complex scenarios of multiple storms. Ensemble-based experiments are conducted with and without the FAT for each of the scenarios. The experiments’ analyses and forecasts of storm-related fields are then evaluated using subjective and objective methods. Results from these idealized multiple-storm experiments continue to reveal the potential benefits of correcting storm displacement errors. For example, running the FAT even once can mitigate the “spinup” period experienced by the no-FAT experiments. The new results also show that running the FAT prior to every DA cycling step generally leads to more skillful forecasts at the smaller scales, especially in earlier-initialized forecasts. However, repeatedly running the FAT prior to every DA step can eventually lead to deterioration in analyses and forecasts. Potential solutions to this problem include using longer cycling intervals and running the FAT prior to DA less often. Additional ways to improve the FAT along with other results are presented and discussed.

Significance Statement

The purpose of this work is to explore the impact of correcting storm displacements on analyses and forecasts of storms using an ensemble-based data assimilation and forecast system in an idealized framework. Storm displacement errors are a common problem in current operational and experimental storm-scale forecast systems, so understanding their impact on these systems and providing a method to help mitigate them is important. Results from this study indicate that correcting storm displacement errors with the feature alignment technique can greatly improve analyses and forecasts in multiple-storm scenarios. Future work will focus on exploring the impact of correcting storm displacement errors in a real-data, storm-scale data assimilation and forecast system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Derek R. Stratman, derek.stratman@noaa.gov
Save