• Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, https://doi.org/10.1175/MWR-D-12-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, T., and N. Gustafsson, 1994: Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snowbands over seas and lakes. Mon. Wea. Rev., 122, 10361049, https://doi.org/10.1175/1520-0493(1994)122<1036:CODACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B., and J. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

  • Atlas, D., S.-H. Chou, and W. P. Byerly, 1983: The influence of coastal shape on winter mesoscale air–sea interaction. Mon. Wea. Rev., 111, 245252, https://doi.org/10.1175/1520-0493(1983)111<0245:TIOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M. H., G. J. Mayr, I. Vergeiner, and H. Pichler, 2000: Strongly nonlinear flow over and around a three-dimensional mountain as a function of the horizontal aspect ratio. J. Atmos. Sci., 57, 39713991, https://doi.org/10.1175/1520-0469(2001)058<3971:SNFOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T., B. Geerts, L. S. Campbell, and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Wea. Rev., 145, 24372459, https://doi.org/10.1175/MWR-D-16-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., and B. F. Smull, 2003: Observations and impacts of upstream orographic blocking during a widespread orographic precipitation event. Quart. J. Roy. Meteor. Soc., 129, 391409, https://doi.org/10.1256/qj.02.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1983: The Midwest snow storm of 8–11 December 1977. Mon. Wea. Rev., 111, 253272, https://doi.org/10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1986: Cloud and motion fields in open-cell convection over Lake Michigan. Preprints, Joint Session—23rd Conf. on Radar Meteorology and Conf. on Cloud Physics, Snowmass, CO, Amer. Meteor. Soc., JP202JP205.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., and R. D. Kelly, 1982: Lake-effect snow storms on Lake Michigan, USA. Cloud Dynamics, E. M. Agee and T. Asai, Eds., D. Reidel, 87101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burt, C. A., 2007: Extreme Weather. 2nd ed. W. W. Norton and Company, 320 pp.

  • Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, https://doi.org/10.1175/MWR-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, https://doi.org/10.1175/MWR-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., J. D. Doyle, T. P. Lane, R. D. Sharman, and P. K. Smolarkiewicz, 2005: On physical realizability and uncertainty of numerical solutions. Atmos. Sci. Lett., 6, 118122, https://doi.org/10.1002/asl.100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU and NCAR, 4950.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gowan, T. M., 2019: Trajectories. GitHub, accessed 9 October 2019, https://github.com/tomgowan/trajectories.

  • Gowan, T. M., W. J. Steenburgh, and J. Minder, 2021: Downstream evolution and coastal-to inland transition of landfalling lake-effect systems. Mon. Wea. Rev., 149, 10231040, https://doi.org/10.1175/MWR-D-20-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Great Lakes Environmental Research Laboratory, 2021: Great Lakes statistics. NOAA, accessed 15 February 2015, https://coastwatch.glerl.noaa.gov/statistic/.

    • Search Google Scholar
    • Export Citation
  • Hartnett, J. J., J. M. Collins, M. A. Baxter, and D. P. Chambers, 2014: Spatiotemporal snowfall trends in central New York. J. Appl. Meteor. Climatol., 53, 26852697, https://doi.org/10.1175/JAMC-D-14-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, G. E., 1978: Observations of precipitation-forced circulations in winter orographic storms. J. Atmos. Sci., 35, 14631472, https://doi.org/10.1175/1520-0469(1978)035<1463:OOPFCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138150, https://doi.org/10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, https://doi.org/10.1175/2008JAS2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishihara, M., H. Sakakibara, and Z. Yanagisawa, 1989: Doppler radar analysis of the structure of mesoscale snow bands developed between the winter monsoon and the land breeze. J. Meteor. Soc. Japan, 67, 503520, https://doi.org/10.2151/jmsj1965.67.4_503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316, https://doi.org/10.3402/tellusa.v55i4.14577.

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamoto, T. S., S. Miyazawa, and K. Fuj, 1963: Heavy snowfalls caused by the Hokuriku Front. Kisho Kenyo Noto., 14, 5670.

  • Kindap, T., 2010: A severe sea-effect snow episode over the city of Istanbul. Nat. Hazards, 54, 707723, https://doi.org/10.1007/s11069-009-9496-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and R. B. Smith, 2009: Orographic precipitation in the tropics: Large-eddy simulations and theory. J. Atmos. Sci., 66, 25592578, https://doi.org/10.1175/2009JAS2990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario winter lake-effect systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, https://doi.org/10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., M. Murakami, M. Hoshimoto, N. Orikasa, Y. Yamada, H. Mizuno, K. Hamazu, and H. Watanabe, 2004: The characteristics and evolution of orographic snow clouds under weak cold advection. Mon. Wea. Rev., 132, 174191, https://doi.org/10.1175/1520-0493(2004)132<0174:TCAEOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 360 pp.

  • Laird, N. F., J. E. Walsh, and D. A. R. Kristovich, 2003a: Model simulations examining the relationship of lake-effect morphology to lake shape, wind direction, and wind speed. Mon. Wea. Rev., 131, 21022111, https://doi.org/10.1175/1520-0493(2003)131<2102:MSETRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, and J. E. Walsh, 2003b: Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon. Wea. Rev., 131, 206221, https://doi.org/10.1175/1520-0493(2003)131<0206:IMSETM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., K. Kikuchi, T. Kimura, S. Tazawa, and T. Kasai, 1966: A study on the snowfall in the winter monsoon season in Hokkaido with special reference to low land snowfall. J. Fac. Sci. Hokkaido Univ. Ser., 7, 287308.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

  • Markowski, P., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, https://doi.org/10.1175/MWR-D-15-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazon, J., S. Niemela, D. Pino, H. Savijärvi, and T. Vihma, 2015: Snow bands over the Gulf of Finland in wintertime. Tellus, 67A, 25102, https://doi.org/10.3402/tellusa.v67.25102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze Jr., 2003: Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc., 129, 345371, https://doi.org/10.1256/qj.02.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, L. S. Campbell, P. G. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, https://doi.org/10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. Clark, and W. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan: Two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 4362, https://doi.org/10.2151/jmsj1965.72.1_43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., 1987: On the formation of a convergent cloud band over the Japan Sea in winter; a prediction experiment. J. Meteor. Soc. Japan, 65, 871883, https://doi.org/10.2151/jmsj1965.65.6_871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., 1991: Further numerical study on the formation of the convergent cloud band over the Japan Sea in winter. J. Meteor. Soc. Japan, 69, 419428, https://doi.org/10.2151/jmsj1965.69.3_419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., M. Ikawa, S. Yoshizumi, and T. Yoshida, 1986: On the formation of a convergent cloud band over the Japan Sea in winter; numerical experiments. J. Meteor. Soc. Japan, 64, 841855, https://doi.org/10.2151/jmsj1965.64.6_841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., M. Maki, and T. Yagi, 1990: Doppler radar observation of orographic modification of snow clouds—A case of enhanced snowfall. Report of the National Research Center for Disaster Prevention, Rep. 45, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Nakai, S., K. Iwanami, R. Misumi, S.-G. Park, and T. Kobayashi, 2005: A classification of snow clouds by Doppler radar observations at Nagaoka, Japan. SOLA, 1, 161164, https://doi.org/10.2151/sola.2005-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s Coastal Mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, F. J., and R. Toumi, 2014: On the lake effects of the Caspian Sea. Quart. J. Roy. Meteor. Soc., 140, 13991408, https://doi.org/10.1002/qj.2222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfalls in western and central New York. Wea. Forecasting, 2, 310321, https://doi.org/10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Vaugh, and D. M. Schultz, 2013: Snowbands over the English Channel and Irish Sea during cold-air outbreaks. Quart. J. Roy. Meteor. Soc., 139, 17471761, https://doi.org/10.1002/qj.2079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohigashi, T., and K. Tsuboki, 2007: Shift and intensification processes of the Japan-Sea polar-airmass convergence zone associated with the passage of a mid-tropospheric cold core. J. Meteor. Soc. Japan, 85, 633662, https://doi.org/10.2151/jmsj.85.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohigashi, T., K. Tsuboki, Y. Schusse, and H. Uyeda, 2014: An intensification process of a winter broad cloud band on a flank of the mountain region along the Japan-Sea coast. J. Meteor. Soc. Japan, 92, 7193, https://doi.org/10.2151/jmsj.2014-105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, R., Jr., and R. Sykes Jr., 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, https://doi.org/10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, https://doi.org/10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., and Coauthors, 1993: The Lake Ontario Winter Storms (LOWS) project. Bull. Amer. Meteor. Soc., 74, 18281850, https://doi.org/10.1175/1520-0477-74-10-1828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, https://doi.org/10.1146/annurev.earth.33.092203.122541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze Jr., 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, https://doi.org/10.1002/qj.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., M. Murakami, T. Matsuo, and H. Mizuno, 1996: Sensitivity experiments on the orographic snowfall over the mountainous region of northern Japan. J. Meteor. Soc. Japan, 74, 797813, https://doi.org/10.2151/jmsj1965.74.6_797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiments. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45, 38893896, https://doi.org/10.1175/1520-0469(1988)045<3889:LTOSFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2006: Progress on the theory of orographic precipitation. Special Paper 398: Tectonics, Climate, and Landscape Evolution, Geological Society of America, Boulder, CO, 16 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and L. S. Campbell, 2017: The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Wea. Rev., 145, 24212436, https://doi.org/10.1175/MWR-D-16-0460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and S. Nakai, 2020: Perspectives on sea- and lake-effect precipitation from Japan’s “Gosetsu Chitai.” Bull. Amer. Meteor. Soc., 101, E58E72, https://doi.org/10.1175/BAMS-D-18-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709727, https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., and Coauthors, 2013: Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel–lake-effect storms by the Doppler on Wheels. Mon. Wea. Rev., 141, 28212840, https://doi.org/10.1175/MWR-D-12-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., O. Bousquet, R. A. Houze, B. F. Smull, and M. Mancini, 2003: Airflow within major Alpine river valleys under heavy rainfall. Quart. J. Roy. Meteor. Soc., 129, 411431, https://doi.org/10.1256/qj.02.08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 2005: Numerical study of the 10 January 1998 lake-effect bands observed during Lake-ICE. J. Atmos. Sci., 62, 32323249, https://doi.org/10.1175/JAS3462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, K., and T. Fujita, 1967: A satellite meteorological study of evaporation and cloud formation over the western Pacific under the influence of the winter monsoon. J. Meteor. Soc. Japan, 45, 232250, https://doi.org/10.2151/jmsj1965.45.3_232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umek, L., and A. Gohm, 2016: Lake and orographic effects on a snowstorm at Lake Constance. Mon. Wea. Rev., 144, 46874707, https://doi.org/10.1175/MWR-D-16-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 35913609, https://doi.org/10.1175/MWR-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, and L. S. Campbell, 2018: Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau. Mon. Wea. Rev., 146, 17451762, https://doi.org/10.1175/MWR-D-17-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, S. Nakai, and S. Yamaguchi, 2019: Factors affecting the inland and orographic enhancement of sea-effect snowfall in the Hokuriku region of Japan. Mon. Wea. Rev., 147, 31213143, https://doi.org/10.1175/MWR-D-19-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, S. Nakai, and S. Yamaguchi, 2020: Intrastorm variability of the inland and orographic enhancement of a sea-effect snowstorm in the Hokuriku region of Japan. Mon. Wea. Rev., 148, 25272548, https://doi.org/10.1175/MWR-D-19-0390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, T. K., W. J. Steenburgh, and G. G. Mace, 2019: Characteristics of sea-effect clouds and precipitation over the Sea of Japan region as observed by A-Train satellites. J. Geophys. Res. Atmos., 124, 13221335, https://doi.org/10.1029/2018JD029586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, S., O. Abe, S. Nakai, and A. Sato, 2011: Recent fluctuations of meteorological and snow conditions in Japanese mountains. Ann. Glaciol., 52, 209215, https://doi.org/10.3189/172756411797252266.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 371 368 30
Full Text Views 163 162 9
PDF Downloads 188 187 10

Orographic Effects on Landfalling Lake-Effect Systems

Thomas M. GowanaDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Thomas M. Gowan in
Current site
Google Scholar
PubMed
Close
,
W. James SteenburghaDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
, and
Justin R. MinderbDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Justin R. Minder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Landfalling lake- and sea-effect (hereafter lake-effect) systems often interact with orography, altering the distribution and intensity of precipitation, which frequently falls as snow. In this study, we examine the influence of orography on two modes of lake-effect systems: long-lake-axis-parallel (LLAP) bands and broad-coverage, open-cell convection. Specifically, we generate idealized large-eddy simulations of a LLAP band produced by an oval lake and broad-coverage, open-cell convection produced by an open lake (i.e., without flanking shorelines) with a downstream coastal plain, 500-m peak, and 2000-m ridge. Without terrain, the LLAP band intersects a coastal baroclinic zone over which ascent and hydrometeor mass growth are maximized, with transport and fallout producing an inland precipitation maximum. The 500-m peak does not significantly alter this structure, but slightly enhances precipitation due to orographic ascent, increased hydrometeor mass growth, and reduced subcloud sublimation. In contrast, a 2000-m ridge disrupts the band by blocking the continental flow that flanks the coastlines. This, combined with differential surface heating between the lake and land, leads to low-level flow reversal, shifting the coastal baroclinic zone and precipitation maximum offshore. In contrast, the flow moves over the terrain in open lake, open-cell simulations. Over the 500-m peak, this yields an increase in the frequency of weaker (<1 m s−1) updrafts and weak precipitation enhancement, although stronger updrafts decline. Over the 2000-m ridge, however, buoyancy and convective vigor increase dramatically, contributing to an eightfold increase in precipitation. Overall, these results highlight differences in the influence of orography on two common lake-effect modes.

Significance Statement

Landfalling lake- and sea-effect snowstorms frequently interact with hills, mountains, and upland regions, altering the distribution and intensity of snowfall. Using high-resolution numerical modeling with simplified lake shapes and terrain features, we illustrate how terrain features affect two common types of lake-effect storms and why long-lake-axis-parallel (LLAP) bands can feature high precipitation rates but weaker orographic enhancement than broad-coverage, open-cell convection.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas M. Gowan, tom.gowan@gmail.com

Abstract

Landfalling lake- and sea-effect (hereafter lake-effect) systems often interact with orography, altering the distribution and intensity of precipitation, which frequently falls as snow. In this study, we examine the influence of orography on two modes of lake-effect systems: long-lake-axis-parallel (LLAP) bands and broad-coverage, open-cell convection. Specifically, we generate idealized large-eddy simulations of a LLAP band produced by an oval lake and broad-coverage, open-cell convection produced by an open lake (i.e., without flanking shorelines) with a downstream coastal plain, 500-m peak, and 2000-m ridge. Without terrain, the LLAP band intersects a coastal baroclinic zone over which ascent and hydrometeor mass growth are maximized, with transport and fallout producing an inland precipitation maximum. The 500-m peak does not significantly alter this structure, but slightly enhances precipitation due to orographic ascent, increased hydrometeor mass growth, and reduced subcloud sublimation. In contrast, a 2000-m ridge disrupts the band by blocking the continental flow that flanks the coastlines. This, combined with differential surface heating between the lake and land, leads to low-level flow reversal, shifting the coastal baroclinic zone and precipitation maximum offshore. In contrast, the flow moves over the terrain in open lake, open-cell simulations. Over the 500-m peak, this yields an increase in the frequency of weaker (<1 m s−1) updrafts and weak precipitation enhancement, although stronger updrafts decline. Over the 2000-m ridge, however, buoyancy and convective vigor increase dramatically, contributing to an eightfold increase in precipitation. Overall, these results highlight differences in the influence of orography on two common lake-effect modes.

Significance Statement

Landfalling lake- and sea-effect snowstorms frequently interact with hills, mountains, and upland regions, altering the distribution and intensity of snowfall. Using high-resolution numerical modeling with simplified lake shapes and terrain features, we illustrate how terrain features affect two common types of lake-effect storms and why long-lake-axis-parallel (LLAP) bands can feature high precipitation rates but weaker orographic enhancement than broad-coverage, open-cell convection.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas M. Gowan, tom.gowan@gmail.com
Save