• Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone–ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263, https://doi.org/10.1029/93JD02370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B. R., and G. J. Hakim, 2013: Variability and predictability of a three-dimensional hurricane in statistical equilibrium. J. Atmos. Sci., 70, 18061820, https://doi.org/10.1175/JAS-D-12-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., T. Hara, and I. Ginis, 2020: Impact of shoaling ocean surface waves on wind stress and drag coefficient in coastal waters: 1. Uniform wind. J. Geophys. Res. Oceans, 125, e2020JC016222, https://doi.org/10.1029/2020JC016222.

    • Search Google Scholar
    • Export Citation
  • Curcic, M., and B. K. Haus, 2020: Revised estimates of ocean surface drag in strong winds. Geophys. Res. Lett., 47, e2020GL087647, https://doi.org/10.1029/2020GL087647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, https://doi.org/10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and F. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 37393747, https://doi.org/10.1175/JAS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and F. Zhang, 2017: The role of inner core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 23152324, https://doi.org/10.1175/JAS-D-17-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, R. K., and F. Judt, 2018: A numerical study on the extreme intensification of Hurricane Patricia (2015). Wea. Forecasting, 33, 989999, https://doi.org/10.1175/WAF-D-17-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, https://doi.org/10.1175/MWR-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, J. Y., R. C. Lien, E. A. D’Asaro, and T. B. Sanford, 2019: Scaling of drag coefficients under five tropical cyclones. Geophys. Res. Lett., 46, 33493358, https://doi.org/10.1029/2018GL081574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James de La Cruz, B. J., L. K. Shay, J. B. Wadler, and J. E. Rudzin, 2021: On the hyperbolicity of the bulk air–sea heat flux functions: Insights into the efficiency of air–sea moisture disequilibrium for tropical cyclone intensification. Mon. Wea. Rev., 149, 15171534, https://doi.org/10.1175/MWR-D-20-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., S. S. Chen, and J. Berner, 2015: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles. Quart. J. Roy. Meteor. Soc., 142, 4357, https://doi.org/10.1002/qj.2626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and Z. Moon, 2016: Hurricane intensity predictability. Bull. Amer. Meteor. Soc., 97, 18471857, https://doi.org/10.1175/BAMS-D-15-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., E. S. Blake, and J. P. Cangialosi, 2016: National Hurricane Center tropical cyclone report: Hurricane Patricia (20–24 October 2015). National Hurricane Center Tropical Cyclone Rep. EP202015, 32 pp., https://www.nhc.noaa.gov/data/tcr/EP202015_Patricia.pdf.

    • Search Google Scholar
    • Export Citation
  • Komori, S., K. Iwano, N. Takagaki, R. Onishi, R. Kurose, K. Takahashi, and N. Suzuki, 2018: Laboratory measurements of heat transfer and drag coefficients at extremely high wind speeds. J. Phys. Oceanogr., 48, 959974, https://doi.org/10.1175/JPO-D-17-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowaleski, A. M., and J. L. Evans, 2016: A reformulation of tropical cyclone potential intensity theory incorporating energy production along a radial trajectory. Mon. Wea. Rev., 144, 35693578, https://doi.org/10.1175/MWR-D-15-0383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, and T. Hara, 2004a: Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61, 23342348, https://doi.org/10.1175/1520-0469(2004)061<2334:EOSWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, and T. Hara, 2004b: Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett., 31, L20302, https://doi.org/10.1029/2004GL020988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., and F. Zhang, 2019: Practical uncertainties in the limited predictability of the record-breaking intensification of Hurricane Patricia (2015). Mon. Wea. Rev., 147, 35353556, https://doi.org/10.1175/MWR-D-18-0450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., F. Zhang, E. B. Munsell, S. A. Braun, J. A. Sippel, Y. Weng, and K. Emanuel, 2018: Predictability and dynamics of Hurricane Joaquin (2015) explored through convection-permitting ensemble sensitivity experiments. J. Atmos. Sci., 75, 401424, https://doi.org/10.1175/JAS-D-17-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., X. Chen, F. Zhang, and C. A. Davis, 2020a: Nonlinear impacts of surface exchange coefficient uncertainty on tropical cyclone intensity and air–sea interactions. Geophys. Res. Lett., 47, e2019GL085783, https://doi.org/10.1029/2019GL085783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., R. Rotunno, C. A. Davis, and F. Zhang, 2020b: Consistent impacts of surface enthalpy and drag coefficient uncertainty between an analytical model and simulated tropical cyclone maximum intensity and storm structure. J. Atmos. Sci., 77, 30593080, https://doi.org/10.1175/JAS-D-19-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., S. J. Greybush, X. Chen, and F. Zhang, 2021: Potential for new constraints on tropical cyclone surface-exchange coefficients through simultaneous ensemble-based state and parameter estimation. Mon. Wea. Rev., 149, 22132230, https://doi.org/10.1175/MWR-D-20-0259.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, https://doi.org/10.1175/BAMS-88-4-513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., and D.-L. Zhang, 2018: On the extraordinary intensification of Hurricane Patricia (2015). Part I: Numerical experiments. Wea. Forecasting, 33, 12051224, https://doi.org/10.1175/WAF-D-18-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D. H., R. Bohac, and D. P. Stern, 2016: An assessment of the flux profile method for determining air–sea momentum and enthalpy fluxes from dropsonde data in tropical cyclones. J. Atmos. Sci., 73, 26652682, https://doi.org/10.1175/JAS-D-15-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D. H., C. Wainwright, D. P. Stern, G. H. Bryan, and D. Chavas, 2021: Potential low bias in high-wind drag coefficient inferred from dropsonde data in hurricanes. J. Atmos. Sci., 78, 23392352, https://doi.org/10.1175/JAS-D-20-0390.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and Coauthors, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, https://doi.org/10.1175/2007JAS2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987: Ocean response to a hurricane. Part I: Observations. J. Phys. Oceanogr., 17, 20652083, https://doi.org/10.1175/1520-0485(1987)017<2065:ORTAHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Sroka, S., and K. Emanuel, 2021: A review of parameterizations for enthalpy and momentum fluxes from sea spray in tropical cyclones. J. Phys. Oceanogr., 51, 30533069. https://doi.org/10.1175/JPO-D-21-0023.1

    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. J. Adv. Model. Earth Syst., 7, 15341553, https://doi.org/10.1002/2015MS000474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2016: Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts. Mon. Wea. Rev., 144, 34873506, https://doi.org/10.1175/MWR-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and D. Cook, 2013: The role of vortex and environment errors in genesis forecasts of Hurricanes Danielle and Karl (2010). Mon. Wea. Rev., 141, 232251, https://doi.org/10.1175/MWR-D-12-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y., D. Sergeev, M. Vdovin, A. Kandaurov, O. Ermakova, and N. Takagaki, 2020: A laboratory study of the effect of surface waves on heat and momentum transfer at high wind speeds. J. Geophys. Res. Oceans, 125, e2020JC016276, https://doi.org/10.1029/2020JC016276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, https://doi.org/10.1002/qj.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, https://doi.org/10.1175/2009JAS3143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Li, J. Xu, Z. M. Tan, and Y. Lin, 2021: The intensity dependence of tropical cyclone intensification rate in a simplified energetically based dynamical system model. J. Atmos. Sci., 78, 20332045, https://doi.org/10.1175/JAS-D-20-0393.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, https://doi.org/10.1175/2011MWR3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, https://doi.org/10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, https://doi.org/10.1175/2009JAS2824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 393 390 8
Full Text Views 130 130 3
PDF Downloads 159 159 2

The Consequences of Surface-Exchange Coefficient Uncertainty on an Otherwise Highly Predictable Major Hurricane

Robert G. NystromaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Robert G. Nystrom in
Current site
Google Scholar
PubMed
Close
and
Falko JudtaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Falko Judt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In addition to initial conditions, uncertainty in model physics can also influence the practical predictability of tropical cyclones. In this study, the influence that various magnitudes of uncertainty in the surface exchange coefficients of momentum (Cd) and enthalpy (Ck) can have on an otherwise highly predictable major hurricane (Hurricane Patricia) is compared with that resulting from climatological environmental initial condition uncertainty and the intrinsic limit for this case. As the systematic uncertainty in Cd and Ck is reduced from 40% to 1%, the simulated uncertainty in the intensity and structure is substantially reduced and approaches the intrinsic limit when uncertainty is reduced to 1%. In addition, the forecasted intensity and structure uncertainty only becomes less than that resulting from climatological environmental initial condition uncertainty once the systematic uncertainty in Cd and Ck is reduced to ∼10%, highlighting the strong influence of model error in limiting TC predictability. If Cd and Ck are perturbed stochastically, instead of systematically, it is shown that the influence on the simulated intensity and structure is negligible and nearly identical to the intrinsic limit, regardless of the magnitude of the stochastic Cd and Ck perturbations. While the magnitude of the stochastic Cd and Ck perturbations are comparable to the systematic perturbations, the stochastic perturbations are shown to not substantially perturb the time-integrated inner-core fluxes of momentum or enthalpy that predominantly determine simulated tropical cyclone intensity. Last, it is shown that the kinetic energy error growth behavior varies with the radius, azimuthal wavenumber, and ensemble design.

Significance Statement

The air–sea energy exchange beneath hurricanes is highly uncertain but strongly influences intensity. In this study, the influences of different magnitudes of surface-exchange coefficient uncertainty on the simulated intensity of an intense hurricane is compared with that resulting from environmental initial condition uncertainty and the intrinsic predictability limit. The main takeaway is that current surface-exchange coefficient uncertainties result in larger intensity uncertainty than environmental initial condition uncertainty, and substantial improvements in predictions are possible if current surface-exchange coefficient uncertainties are reduced. Furthermore, it is shown that randomly perturbing the surface-exchange coefficients at each point in space and time is not the best approach to account for the influences of this uncertain physical process on hurricane prediction because it has minimal influence on the simulated intensity.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert G. Nystrom, nystrom@ucar.edu

Abstract

In addition to initial conditions, uncertainty in model physics can also influence the practical predictability of tropical cyclones. In this study, the influence that various magnitudes of uncertainty in the surface exchange coefficients of momentum (Cd) and enthalpy (Ck) can have on an otherwise highly predictable major hurricane (Hurricane Patricia) is compared with that resulting from climatological environmental initial condition uncertainty and the intrinsic limit for this case. As the systematic uncertainty in Cd and Ck is reduced from 40% to 1%, the simulated uncertainty in the intensity and structure is substantially reduced and approaches the intrinsic limit when uncertainty is reduced to 1%. In addition, the forecasted intensity and structure uncertainty only becomes less than that resulting from climatological environmental initial condition uncertainty once the systematic uncertainty in Cd and Ck is reduced to ∼10%, highlighting the strong influence of model error in limiting TC predictability. If Cd and Ck are perturbed stochastically, instead of systematically, it is shown that the influence on the simulated intensity and structure is negligible and nearly identical to the intrinsic limit, regardless of the magnitude of the stochastic Cd and Ck perturbations. While the magnitude of the stochastic Cd and Ck perturbations are comparable to the systematic perturbations, the stochastic perturbations are shown to not substantially perturb the time-integrated inner-core fluxes of momentum or enthalpy that predominantly determine simulated tropical cyclone intensity. Last, it is shown that the kinetic energy error growth behavior varies with the radius, azimuthal wavenumber, and ensemble design.

Significance Statement

The air–sea energy exchange beneath hurricanes is highly uncertain but strongly influences intensity. In this study, the influences of different magnitudes of surface-exchange coefficient uncertainty on the simulated intensity of an intense hurricane is compared with that resulting from environmental initial condition uncertainty and the intrinsic predictability limit. The main takeaway is that current surface-exchange coefficient uncertainties result in larger intensity uncertainty than environmental initial condition uncertainty, and substantial improvements in predictions are possible if current surface-exchange coefficient uncertainties are reduced. Furthermore, it is shown that randomly perturbing the surface-exchange coefficients at each point in space and time is not the best approach to account for the influences of this uncertain physical process on hurricane prediction because it has minimal influence on the simulated intensity.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert G. Nystrom, nystrom@ucar.edu
Save