• Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., 2008: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics. Quart. J. Roy. Meteor. Soc., 134, 19711996, https://doi.org/10.1002/qj.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf., 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, D. I., N. Bormann, and E. V. Hólm, 2021: On the addition of microwave sounders and numerical weather prediction skill. Quart. J. Roy. Meteor. Soc., 147, 37033718, https://doi.org/10.1002/qj.4149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El Akkraoui, A., Y. Tremolet, and R. Todling, 2013: Preconditioning of variational data assimilation and the use of a bi-conjugate gradient method. Quart. J. Roy. Meteor. Soc., 139, 731741, https://doi.org/10.1002/qj.1997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., K. Raeder, and M. Ehrendorfer, 2004: Singular vectors for moisture-measuring norms. Quart. J. Roy. Meteor. Soc., 130, 963987, https://doi.org/10.1256/qj.02.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., G. A. Grell, A. Molod, M. A. Thompson, W. M. Putman, C. M. Santos-Silva, and E. P. Souza, 2018: Assessing the Grell-Freitas convection parameterization in the NASA GEOS modeling system. J. Adv. Model. Earth Syst., 10, 12661289, https://doi.org/10.1029/2017MS001251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: Downward control of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245, https://doi.org/10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX Observation Impact Intercomparison Experiment. Mon. Wea. Rev., 138, 40094025, https://doi.org/10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holdaway, D., R. Errico, R. Gelaro, J. G. Kim, and R. Mahajan, 2015: A linearized prognostic cloud scheme in NASA’s Goddard earth observing system data assimilation tools. Mon. Wea. Rev., 143, 41984219, https://doi.org/10.1175/MWR-D-15-0037.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, G., and J.-N. Thépaut, 2007: Evaluation of the impact of the space component of the Global Observing System through Observing System Experiments. ECMWF Newsletter, No. 113, ECMWF, Reading, United Kingdom, 1628, https://www.ecmwf.int/sites/default/files/elibrary/2007/17527-evaluation-impact-space-component-global-observing-system-through-observing-system-experiments.pdf.

    • Crossref
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009: Improving incremental balance in the GSI 3DVar analysis system. Mon. Wea. Rev., 137, 10461060, https://doi.org/10.1175/2008MWR2623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, https://doi.org/10.3402/tellusa.v56i3.14413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, H., N. Bormann, I. Sandu, J. Day, J. Farnan, and P. Bauer, 2019: Use and impact of arctic observations in the ECMWF numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 145, 34323454, https://doi.org/10.1002/qj.3628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lord, S., G. Gayno, and F. Yang, 2016: Analysis of an observing system experiment for the joint polar satellite system. Bull. Amer. Meteor. Soc., 97, 14091425, https://doi.org/10.1175/BAMS-D-14-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., M. Tiedtke, and J.-F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, https://www.ecmwf.int/en/elibrary/10845-short-history-pbl-parameterization-ecmwf.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, 716 pp., https://www.nap.edu/catalog/24938/thriving-on-our-changing-planet-a-decadal-strategy-for-earth.

    • Crossref
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Q. Liu, R. D. Koster, J. V. Ardizzone, A. Colliander, W. T. Crow, G. J. De Lannoy, and J. S. Kimball, 2018: Soil moisture active passive (SMAP) project assessment report for version 4 of the L4_SM data product. NASA Tech. Memo. NASA/TM-2018-104606, Vol. 52, 72 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Reichle1083.pdf.

  • Takacs, L. L., M. J. Suárez, and R. Todling, 2016: Maintaining atmospheric mass and water balance in reanalyses. Quart. J. Roy. Meteor. Soc., 142, 15651573, https://doi.org/10.1002/qj.2763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., M. J. Suárez, and R. Todling, 2018: The stability of incremental analysis update. Mon. Wea. Rev., 146, 32593275, https://doi.org/10.1175/MWR-D-18-0117.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2021: Toward a global planetary boundary layer observing system: The NASA PBL incubation study team report. NASA PBL Incubation Study Team, 134 pp., https://science.nasa.gov/earth-science/decadal-pbl.

    • Crossref
    • Export Citation
  • Todling, R., 2013: Comparing two approaches for assessing observation impact. Mon. Wea. Rev., 141, 14841505, https://doi.org/10.1175/MWR-D-12-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todling, R., and A. El Akkraoui, 2018: The GMAO hybrid ensemble-variational atmospheric data assimilation system: Version 2.0. NASA Tech. Memo. NASA/TM-2018-104606, Vol. 50, NASA Goddard Space Flight Center, 184 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Todling1019.pdf.

    • Crossref
    • Export Citation
  • Todling, R., and Coauthors, 2022: A brief report on recent upgrades to the atmospheric analysis of the GMAO hybrid 4Denvar system: GEOS-5.27 and GEOS-5.29. NASA Tech Memo, NASA Goddard Space Flight Center, in press.

  • Trémolet, Y., 2007: First-order and higher-order approximations of observation impact. Meteor. Z., 16, 693694, https://doi.org/10.1127/0941-2948/2007/0258.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2016: All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Wea. Rev., 144, 47094735, https://doi.org/10.1175/MWR-D-15-0445.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 210 16
Full Text Views 126 126 8
PDF Downloads 161 161 11

Observation Impact and Information Retention in the Lower Troposphere of the GMAO GEOS Data Assimilation System

Yanqiu ZhuaGlobal Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Yanqiu Zhu in
Current site
Google Scholar
PubMed
Close
,
Ricardo TodlingaGlobal Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ricardo Todling in
Current site
Google Scholar
PubMed
Close
, and
Nathan ArnoldaGlobal Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Nathan Arnold in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, we have assessed the effectiveness of the use of existing observing systems in the lower troposphere in the GEOS hybrid–4DEnVar data assimilation system through a set of observing system experiments. The results show that microwave radiances have a large impact in the Southern Hemisphere and tropical ocean, but the large influence is mostly observed above 925 hPa and dissipates relatively quickly with longer forecast lead times. Conventional data information holds better in the forecast ranging from the surface to 100 hPa, depending on the field evaluated, in the Northern Hemisphere and lowest model levels in the tropics. Infrared radiances collectively have much less impact in the lower troposphere. Removing surface observations has small but persistent impact on specific humidity in the upper atmosphere, but small or negligible impact on planetary boundary layer (PBL) height and temperature. The model responses to the incremental analysis update (IAU) forcing are also analyzed. In the IAU assimilation window, the physics responds strongly to the IAU forcing in the lower troposphere, and the changes of physics tendency in the lower troposphere and hydrodynamics tendency in the mid- and upper troposphere are viewed as beneficial to the reduction of state error covariance. In the subsequent forecast, the model tendencies continue to deviate further from the original free forecast with forecast lead times around 300–400 hPa, but physics tendency has showed signs of returning to its original free forecast mechanisms at 1-day forecast in the lower troposphere.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanqiu Zhu, Yanqiu.Zhu@nasa.gov

Abstract

In this study, we have assessed the effectiveness of the use of existing observing systems in the lower troposphere in the GEOS hybrid–4DEnVar data assimilation system through a set of observing system experiments. The results show that microwave radiances have a large impact in the Southern Hemisphere and tropical ocean, but the large influence is mostly observed above 925 hPa and dissipates relatively quickly with longer forecast lead times. Conventional data information holds better in the forecast ranging from the surface to 100 hPa, depending on the field evaluated, in the Northern Hemisphere and lowest model levels in the tropics. Infrared radiances collectively have much less impact in the lower troposphere. Removing surface observations has small but persistent impact on specific humidity in the upper atmosphere, but small or negligible impact on planetary boundary layer (PBL) height and temperature. The model responses to the incremental analysis update (IAU) forcing are also analyzed. In the IAU assimilation window, the physics responds strongly to the IAU forcing in the lower troposphere, and the changes of physics tendency in the lower troposphere and hydrodynamics tendency in the mid- and upper troposphere are viewed as beneficial to the reduction of state error covariance. In the subsequent forecast, the model tendencies continue to deviate further from the original free forecast with forecast lead times around 300–400 hPa, but physics tendency has showed signs of returning to its original free forecast mechanisms at 1-day forecast in the lower troposphere.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanqiu Zhu, Yanqiu.Zhu@nasa.gov
Save