Supercell-External Storms and Boundaries Acting as Catalysts for Tornadogenesis

Jannick Fischer aDepartment of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Jannick Fischer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4314-7331
and
Johannes M. L. Dahl aDepartment of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Johannes M. L. Dahl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It has long been observed that interactions of a supercell with other storms or storm-scale boundaries sometimes seem to directly instigate tornadogenesis. First, the authors explore the frequency of such constructive interactions. Radar data from WSR-88D are used to categorize 136 tornadic supercells into isolated supercells and supercells that interacted with external factors within 20 min before tornadogenesis. Most cases (80%) showed some form of external influence prior to tornadogenesis. Common patterns of interactions, the typical supercell quadrant that is affected, and changes in azimuthal shear are also identified. To further study these interactions, two sets of idealized Cloud Model 1 (CM1) simulations are performed. The first set demonstrates that the speed of the near-ground horizontal flow relative to the updraft can control whether a vortex patch develops into a tornado. A weaker updraft-relative flow is favorable because the developing vortex stays in the updraft region longer and becomes less tilted. Building on these results, it is shown that external outflow can lead to tornado formation by a deceleration of the updraft-relative flow. The deceleration is caused by the pressure gradient force associated with the external outflow, which is already noticeable several kilometers ahead of the outflow boundary. This offers one possible mechanism by which external outflow can act as a catalyst for supercell tornadogenesis.

Fischer’s current affiliation: Institute of Meteorology and Climate Research-Department Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jannick Fischer, jannick.fischer@kit.edu

Abstract

It has long been observed that interactions of a supercell with other storms or storm-scale boundaries sometimes seem to directly instigate tornadogenesis. First, the authors explore the frequency of such constructive interactions. Radar data from WSR-88D are used to categorize 136 tornadic supercells into isolated supercells and supercells that interacted with external factors within 20 min before tornadogenesis. Most cases (80%) showed some form of external influence prior to tornadogenesis. Common patterns of interactions, the typical supercell quadrant that is affected, and changes in azimuthal shear are also identified. To further study these interactions, two sets of idealized Cloud Model 1 (CM1) simulations are performed. The first set demonstrates that the speed of the near-ground horizontal flow relative to the updraft can control whether a vortex patch develops into a tornado. A weaker updraft-relative flow is favorable because the developing vortex stays in the updraft region longer and becomes less tilted. Building on these results, it is shown that external outflow can lead to tornado formation by a deceleration of the updraft-relative flow. The deceleration is caused by the pressure gradient force associated with the external outflow, which is already noticeable several kilometers ahead of the outflow boundary. This offers one possible mechanism by which external outflow can act as a catalyst for supercell tornadogenesis.

Fischer’s current affiliation: Institute of Meteorology and Climate Research-Department Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jannick Fischer, jannick.fischer@kit.edu
Save
  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 29102927, https://doi.org/10.1175/1520-0493(1999)127<2910:TIOPBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor. Climatol., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 2000: An Introduction to Fluid Dynamics. 2nd ed. Cambridge University Press, 658 pp., https://doi.org/10.1017/CBO9780511800955.

  • Blanchard, D. O., 2008: Interactions between a supercell and a quasi-stationary frontal boundary. Mon. Wea. Rev., 136, 51995210, https://doi.org/10.1175/2008MWR2437.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. L. Weisman, 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128, 31283149, https://doi.org/10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2019: Tornadogenesis and early tornado evolution in the El Reno, Oklahoma, supercell on 31 May 2013. Mon. Wea. Rev., 147, 20452066, https://doi.org/10.1175/MWR-D-18-0338.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byko, Z., P. Markowski, Y. Richardson, J. Wurman, and E. Adlerman, 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155186, https://doi.org/10.1175/2008WAF2222116.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is There a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 49294942, https://doi.org/10.1175/MWR-D-15-0115.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2020: Near-surface vortex formation in supercells from the perspective of vortex patch dynamics. Mon. Wea. Rev., 148, 35333547, https://doi.org/10.1175/MWR-D-20-0080.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2nd ed. E. Kessler, Ed., University of Oklahoma Press, 197–236.

  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., and H. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

  • Doswell, C. A., D. V. Baker, and C. A. Liles, 2002: Recognition of negative mesoscale factors for severe-weather potential: A case study. Wea. Forecasting, 17, 937954, https://doi.org/10.1175/1520-0434(2002)017<0937:RONMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, https://doi.org/10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2020: The relative importance of updraft and cold pool characteristics in supercell tornadogenesis using highly idealized simulations. J. Atmos. Sci., 77, 40894107, https://doi.org/10.1175/JAS-D-20-0126.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2022: Transition of near-ground vorticity dynamics during tornado-genesis. J. Atmos. Sci., 79, 467483, https://doi.org/10.1175/JAS-D-21-0181.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., M. C. Coniglio, E. N. Rasmussen, J. C. Furtado, and B. E. Coffer, 2020: Modes of storm-scale variability and tornado potential in VORTEX2 near- and far-field tornadic environments. Mon. Wea. Rev., 148, 41854207, https://doi.org/10.1175/MWR-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., A. W. Lyza, M. A. Satrio, M. R. Diedrichsen, M. C. Coniglio, and S. Waugh, 2022: A climatology of cell mergers with supercells and their association with mesocyclone evolution. Mon. Wea. Rev., 150, 451461, https://doi.org/10.1175/MWR-D-21-0204.1.

    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2012: Observations of mergers between squall lines and isolated supercell thunderstorms. Wea. Forecasting, 27, 255278, https://doi.org/10.1175/WAF-D-11-00058.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., and D. M. Kingfield, 2019: Dissipation characteristics of tornadic vortex signatures associated with long-duration tornadoes. J. Appl. Meteor. Climatol., 58, 317339, https://doi.org/10.1175/JAMC-D-18-0187.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. Popstefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Search Google Scholar
    • Export Citation
  • Golden, J. H., and D. Purcell, 1977: Photogrammetric velocities for the Great Bend, Kansas, tornado of 30 August 1974: Accelerations and asymmetries. Mon. Wea. Rev., 105, 485492, https://doi.org/10.1175/1520-0493(1977)105<0485:PVFTGB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and K. R. Knupp, 1993: Tornadogenesis via squall line and supercell interaction: The November 15, 1989, Huntsville, Alabama, tornado. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 183–199, https://doi.org/10.1029/GM079p0183.

  • Gray, K., and J. Frame, 2021: The impact of midlevel shear orientation on the longevity of and downdraft location and tornado-like vortex formation within simulated supercells. Mon. Wea. Rev., 149, 37393759, https://doi.org/10.1175/MWR-D-21-0085.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, C. B., D. J. Bodine, J. M. Kurdzo, A. Mahre, and R. D. Palmer, 2019: High-temporal resolution observations of the 27 May 2015 Canadian, Texas, tornado using the Atmospheric Imaging Radar. Mon. Wea. Rev., 147, 873891, https://doi.org/10.1175/MWR-D-18-0297.1.

    • Search Google Scholar
    • Export Citation
  • Guarriello, F., C. J. Nowotarski, and C. C. Epifanio, 2018: Effects of the low-level wind profile on outflow position and near-surface vertical vorticity in simulated supercell thunderstorms. J. Atmos. Sci., 75, 731753, https://doi.org/10.1175/JAS-D-17-0174.1.

    • Search Google Scholar
    • Export Citation
  • Hamilton, R. E., 1969: A Review of Use of Radar in Detection of Tornadoes and Hail. Vol. 34, Weather Bureau, Eastern Region, 64 pp.

  • Hastings, R., and Y. Richardson, 2016: Long-term morphological changes in simulated supercells following mergers with nascent supercells in directionally varying shear. Mon. Wea. Rev., 144, 471499, https://doi.org/10.1175/MWR-D-15-0193.1.

    • Search Google Scholar
    • Export Citation
  • Helmus, J., and S. Collis, 2016: The Python ARM radar toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, 25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Honda, T., and T. Kawano, 2016: A possible mechanism of tornadogenesis associated with the interaction between a supercell and an outflow boundary without horizontal shear. J. Atmos. Sci., 73, 12731292, https://doi.org/10.1175/JAS-D-14-0347.1.

    • Search Google Scholar
    • Export Citation
  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., B. F. Jewett, and R. B. Wilhelmson, 2006: The 19 April 1996 Illinois tornado outbreak. Part II: Cell mergers and associated tornado incidence. Wea. Forecasting, 21, 449464, https://doi.org/10.1175/WAF943.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1976: The flanking line, a severe thunderstorm intensification source. J. Atmos. Sci., 33, 686694, https://doi.org/10.1175/1520-0469(1976)033<0686:TFLAST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., D. W. Burgess, and R. A. Brown, 1975: Tornado production and storm sustenance. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 744–745.

  • Lewellen, W. S., 1971: A Review of Confined Vortex Flows. National Aeronautics and Space Administration, 219 pp.

  • Maddox, R. A., L. R. Hoxit, and C. F. Chappell, 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322336, https://doi.org/10.1175/1520-0493(1980)108<0322:ASOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magee, K. M., and C. E. Davenport, 2020: An observational analysis quantifying the distance of supercell-boundary interactions in the Great Plains. J. Oper. Meteor., 8, 1538, https://doi.org/10.15191/nwajom.2020.0802.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2020: What is the intrinsic predictability of tornadic supercell thunderstorms? Mon. Wea. Rev., 148, 31573180, https://doi.org/10.1175/MWR-D-20-0076.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and C. Hannon, 2006: Multiple-Doppler radar observations of the evolution of vorticity extrema in a convective boundary layer. Mon. Wea. Rev., 134, 355374, https://doi.org/10.1175/MWR3060.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2017: Large sensitivity of near-surface vertical vorticity development to heat sink location in idealized simulations of supercell-like storms. J. Atmos. Sci., 74, 10951104, https://doi.org/10.1175/JAS-D-16-0372.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, https://doi.org/10.1175/MWR-D-11-00336.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, and G. Bryan, 2014: The origins of vortex sheets in a simulated supercell thunderstorm. Mon. Wea. Rev., 142, 39443954, https://doi.org/10.1175/MWR-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., T. P. Hatlee, and Y. P. Richardson, 2018: Tornadogenesis in the 12 May 2010 supercell thunderstorm intercepted by VORTEX2 near Clinton, Oklahoma. Mon. Wea. Rev., 146, 36233650, https://doi.org/10.1175/MWR-D-18-0196.1.

    • Search Google Scholar
    • Export Citation
  • Murdzek, S. S., P. M. Markowski, Y. P. Richardson, and R. L. Tanamachi, 2020: Processes preventing the development of a significant tornado in a Colorado supercell on 26 May 2010. Mon. Wea. Rev., 148, 17531778, https://doi.org/10.1175/MWR-D-19-0288.1.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, Y. P. Richardson, and G. H. Bryan, 2015: Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon. Wea. Rev., 143, 272297, https://doi.org/10.1175/MWR-D-14-00151.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. M. L. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 27952816, https://doi.org/10.1175/MWR-D-14-00310.1.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483, https://doi.org/10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174191, https://doi.org/10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923938, https://doi.org/10.1175/WAF962.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. W., 2012: Significant tornado events associated with cell mergers. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 9.4. https://ams.confex.com/ams/26SLS/webprogram/Paper211575.html.

  • Rogers, J. W., and C. C. Weiss, 2008: The association of cell mergers with tornado occurrence. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P3.23, https://ams.confex.com/ams/24SLS/webprogram/Paper141784.html.

  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, https://doi.org/10.1175/MWR-D-11-00142.1.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, M. Xue, W.-C. Lee, K. A. Orzel, S. J. Frasier, and R. M. Wakimoto, 2013: Near-surface vortex structure in a tornado and in a sub-tornado-strength convective-storm vortex observed by a mobile, W-band radar during VORTEX2. Mon. Wea. Rev., 141, 36613690, https://doi.org/10.1175/MWR-D-12-00331.1.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501524, https://doi.org/10.1175/WAF-D-14-00164.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1984: Cloud interactions and merging: Numerical simulations. J. Atmos. Sci., 41, 29012917, https://doi.org/10.1175/1520-0469(1984)041<2901:CIAMNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., D. C. Dowell, J. L. Schroeder, P. S. Skinner, A. E. Reinhart, P. M. Markowski, and Y. P. Richardson, 2015: A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts. Mon. Wea. Rev., 143, 27362753, https://doi.org/10.1175/MWR-D-14-00307.1.

    • Search Google Scholar
    • Export Citation
  • Westcott, N., 1984: A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc., 65, 219227, https://doi.org/10.1175/1520-0477(1984)065<0219:AHPOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilkins, E. M., Y. K. Sasaki, G. E. Gerber, and W. H. Chaplin, 1976: Numerical simulation of the lateral interactions between buoyant clouds. J. Atmos. Sci., 33, 13211329, https://doi.org/10.1175/1520-0469(1976)033<1321:NSOTLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1058 585 24
Full Text Views 439 302 16
PDF Downloads 484 318 16