Robustness of the Stochastic Parameterization of Subgrid-Scale Wind Variability in Sea Surface Fluxes

Kota Endo aSchool of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Kota Endo in
Current site
Google Scholar
PubMed
Close
,
Adam H. Monahan aSchool of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Adam H. Monahan in
Current site
Google Scholar
PubMed
Close
,
Julie Bessac bMathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois

Search for other papers by Julie Bessac in
Current site
Google Scholar
PubMed
Close
,
Hannah M. Christensen cDepartment of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Hannah M. Christensen in
Current site
Google Scholar
PubMed
Close
, and
Nils Weitzel dDepartment of Geosciences, University of Tübingen, Tübingen, Germany
eInstitute of Environmental Physics, Heidelberg University, Heidelberg, Germany

Search for other papers by Nils Weitzel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution numerical models have been used to develop statistical models of the enhancement of sea surface fluxes resulting from spatial variability of sea surface wind. In particular, studies have shown that flux enhancement is not a deterministic function of the resolved state. Previous studies focused on single geographical areas or used a single high-resolution numerical model. This study extends the development of such statistical models by considering six different high-resolution models, four different geographical regions, and three different 10-day periods, allowing for a systematic investigation of the robustness of both the deterministic and stochastic parts of the data-driven parameterization. Results indicate that the deterministic part, based on regressing the unresolved normalized flux onto resolved-scale normalized flux and precipitation, is broadly robust across different models, regions, and time periods. The statistical features of the stochastic part of the model (spatial and temporal autocorrelation and parameters of a Gaussian process fit to the regression residual) are also found to be robust and not strongly sensitive to the underlying model, modeled geographical region, or time period studied. Best-fit Gaussian process parameters display robust spatial heterogeneity across models, indicating potential for improvements to the statistical model. These results illustrate the potential for the development of a generic, explicitly stochastic parameterization of sea surface flux enhancements dependent on wind variability.

Bessac’s current affiliation: National Renewable Energy Laboratory, Golden, Colorado.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kota Endo, kotae@uvic.ca

Abstract

High-resolution numerical models have been used to develop statistical models of the enhancement of sea surface fluxes resulting from spatial variability of sea surface wind. In particular, studies have shown that flux enhancement is not a deterministic function of the resolved state. Previous studies focused on single geographical areas or used a single high-resolution numerical model. This study extends the development of such statistical models by considering six different high-resolution models, four different geographical regions, and three different 10-day periods, allowing for a systematic investigation of the robustness of both the deterministic and stochastic parts of the data-driven parameterization. Results indicate that the deterministic part, based on regressing the unresolved normalized flux onto resolved-scale normalized flux and precipitation, is broadly robust across different models, regions, and time periods. The statistical features of the stochastic part of the model (spatial and temporal autocorrelation and parameters of a Gaussian process fit to the regression residual) are also found to be robust and not strongly sensitive to the underlying model, modeled geographical region, or time period studied. Best-fit Gaussian process parameters display robust spatial heterogeneity across models, indicating potential for improvements to the statistical model. These results illustrate the potential for the development of a generic, explicitly stochastic parameterization of sea surface flux enhancements dependent on wind variability.

Bessac’s current affiliation: National Renewable Energy Laboratory, Golden, Colorado.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kota Endo, kotae@uvic.ca

Supplementary Materials

    • Supplemental Materials (PDF 0.3316 MB)
Save
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Search Google Scholar
    • Export Citation
  • Bessac, J., A. H. Monahan, H. M. Christensen, and N. Weitzel, 2019: Stochastic parameterization of subgrid-scale velocity enhancement of sea surface fluxes. Mon. Wea. Rev., 147, 14471469, https://doi.org/10.1175/MWR-D-18-0384.1.

    • Search Google Scholar
    • Export Citation
  • Bessac, J., H. M. Christensen, K. Endo, A. H. Monahan, and N. Weitzel, 2021: Scale-aware space-time stochastic parameterization of subgrid-scale velocity enhancement of sea surface fluxes. J. Adv. Model. Earth Syst., 13, e2020MS002367, https://doi.org/10.1029/2020MS002367.

    • Search Google Scholar
    • Export Citation
  • Blein, S., R. Roehrig, A. Voldoire, and G. Faure, 2020: Meso-scale contribution to air–sea turbulent fluxes at GCM scale. Quart. J. Roy. Meteor. Soc., 146, 24662495, https://doi.org/10.1002/qj.3804.

    • Search Google Scholar
    • Export Citation
  • Blein, S., R. Roehrig, and A. Voldoire, 2022: Parameterizing the mesoscale enhancement of oceanic surface turbulent fluxes: A physical–statistical approach. Quart. J. Roy. Meteor. Soc., 148, 16831708, https://doi.org/10.1002/qj.4273.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and M. L. Stein, 2023: Linear-cost covariance functions for Gaussian random fields. J. Amer. Stat. Assoc., 118, 147164, https://doi.org/10.1080/01621459.2021.1919122.

    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., 2020: Constraining stochastic parametrisation schemes using high-resolution simulations. Quart. J. Roy. Meteor. Soc., 146, 938962, https://doi.org/10.1002/qj.3717.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, https://doi.org/10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Davini, P., and Coauthors, 2017: Climate SPHINX: Evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model. Geosci. Model Dev., 10, 13831402, https://doi.org/10.5194/gmd-10-1383-2017.

    • Search Google Scholar
    • Export Citation
  • Dawson, A., and T. N. Palmer, 2015: Simulating weather regimes: Impact of model resolution and stochastic parameterization. Climate Dyn., 44, 21772193, https://doi.org/10.1007/s00382-014-2238-x.

    • Search Google Scholar
    • Export Citation
  • Deardorff, D. W., 1970: Preliminary results from numerical integrations of the unstable planetary boundary layer. J. Atmos. Sci., 27, 12091211, https://doi.org/10.1175/1520-0469(1970)027<1209:PRFNIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, https://doi.org/10.1007/s00162-012-0281-y.

    • Search Google Scholar
    • Export Citation
  • Endo, K., 2022: Robustness of the parameterization of sub-grid scale wind variability on sea-surface fluxes. M.S. thesis, School of Earth and Ocean Sciences, University of Victoria, 240 pp., https://hdl.handle.net/1828/13809.

  • European Centre for Medium-Range Weather Forecasts, 2020a: IFS Documentation—CY47R1. Part III: Dynamics and numerical procedures. ECMWF Tech. Doc., 31 pp., https://www.ecmwf.int/sites/default/files/elibrary/2020/81188-ifs-documentation-cy47r1-part-iii-dynamics-and-numerical-procedures_1.pdf.

  • European Centre for Medium-Range Weather Forecasts, 2020b: IFS Documentation— CY47R1. Part IV: Physical processes. ECMWF Tech. Doc., 228 pp., https://www.ecmwf.int/sites/default/files/elibrary/2020/Part-IV-Physical_Processes.pdf.

  • Fagan, K. E., and F. T. Mackenzie, 2007: Air–sea CO2 exchange in a subtropical estuarine-coral reef system, Kaneohe Bay, Oahu, Hawaii. Mar. Chem., 106, 174191, https://doi.org/10.1016/j.marchem.2007.01.016.

    • Search Google Scholar
    • Export Citation
  • Franco, A. C., and Coauthors, 2021: Anthropogenic and climatic contributions to observed carbon system trends in the northeast Pacific. Global Biogeochem. Cycles, 35, e2020GB006829, https://doi.org/10.1029/2020GB006829.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, H. M. Christensen, A. C. Subramanian, and A. H. Monahan, 2020: Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz ’96 model. J. Adv. Model. Earth Syst., 12, e2019MS001896, https://doi.org/10.1029/2019MS001896.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245, https://doi.org/10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62, 23022315, https://doi.org/10.1175/JAS3496.1.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., and A. C. M. Beljaars, 1991: On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speeds. J. Geophys. Res., 96, 22 04322 048, https://doi.org/10.1029/91JC02015.

    • Search Google Scholar
    • Export Citation
  • Harris, L., X. Chen, L. Zhou, and J.-H. Chen, 2020: The nonhydrostatic solver of the GFDL finite-volume cubed-sphere dynamical core. NOAA Tech. Memo. GFDL2020003, 7 pp., https://repository.library.noaa.gov/view/noaa/27489/noaa_27489_DS1.pdf.

  • Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2012: Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Quart. J. Roy. Meteor. Soc., 138, 16921708, https://doi.org/10.1002/qj.1903.

    • Search Google Scholar
    • Export Citation
  • Jabouille, P., J. L. Redelsperger, and J. P. Lafore, 1996: Modification of surface fluxes by atmospheric convection in the TOGA COARE region. Mon. Wea. Rev., 124, 816837, https://doi.org/10.1175/1520-0493(1996)124<0816:MOSFBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodama, C., and Coauthors, 2015: A 20-year climatology of a NICAM AMIP-type simulation. J. Meteor. Soc. Japan, 93, 393424, https://doi.org/10.2151/jmsj.2015-024.

    • Search Google Scholar
    • Export Citation
  • Kodama, C., and Coauthors, 2021: The nonhydrostatic icosahedral atmospheric model for CMIP6 HighResMIP simulations (NICAM16-S): Experimental design, model description, and impacts of model updates. Geosci. Model Dev., 14, 795820, https://doi.org/10.5194/gmd-14-795-2021.

    • Search Google Scholar
    • Export Citation
  • Lin, S., and J. Sheng, 2020: Revisiting dependences of the drag coefficient at the sea surface on wind speed and sea state. Cont. Shelf Res., 207, 104188, https://doi.org/10.1016/j.csr.2020.104188.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070, https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498, https://doi.org/10.1002/qj.49712354416.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Search Google Scholar
    • Export Citation
  • Lister, G., and S. Woolnough, 2008: Cascade—Scale interactions in the tropical atmosphere model runs. NCAS British Atmospheric Data Centre, accessed 19 February 2018, https://catalogue.ceda.ac.uk/uuid/20981e3052a66ca71c2ba92b94760150.

  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the maritime continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, https://doi.org/10.1002/qj.809.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L. T., and J. Sun, 1995: The subgrid velocity scale in the bulk aerodynamic relationship for spatially averaged scalar fluxes. Mon. Wea. Rev., 123, 30323041, https://doi.org/10.1175/1520-0493(1995)123<3032:TSVSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L. T., D. Belušić, and O. Acevedo, 2021: Small-scale spatial variation of the nocturnal wind field. Bound.-Layer Meteor., 180, 225245, https://doi.org/10.1007/s10546-021-00627-z.

    • Search Google Scholar
    • Export Citation
  • Malardel, S., N. Wedi, W. Deconinck, M. Diamantakis, C. Kühnlein, G. Mozdzynski, M. Hamrud, and P. Smolarkiewicz, 2016: A new grid for the IFS. ECMWF Newsletter, No. 146, ECMWF, Reading, United Kingdom, 23–28, https:/doi.org/10.21957/zwdu9u5i.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Miller, M. J., A. C. M. Beljaars, and T. N. Palmer, 1992: The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J. Climate, 5, 418434, https://doi.org/10.1175/1520-0442(1992)005<0418:TSOTEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2019: Stochastic weather and climate models. Nat. Rev. Phys., 1, 463471, https://doi.org/10.1038/s42254-019-0062-2.

  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 44 pp., https://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf.

  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and M. Suarez, 2011: Cloud-system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS-5). Geophys. Res. Lett., 38, L16809, https://doi.org/10.1029/2011GL048438.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 20472067, https://doi.org/10.1256/qj.03.99.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., F. Guichard, and S. Mondon, 2000: A parameterization of mesoscale enhancement of surface fluxes for large-scale models. J. Climate, 13, 402421, https://doi.org/10.1175/1520-0442(2000)013<0402:APOMEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rees, A. P., N. J. P. Owens, and R. C. Upstill-Goddard, 1997: Nitrous oxide in the Bellingshausen Sea and Drake Passage. J. Geophys. Res., 102, 33833391, https://doi.org/10.1029/96JC03350.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128, 10701088, https://doi.org/10.1175/1520-0493(2000)128<1070:ASFCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, https://doi.org/10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The non-hydrostatic icosahedral atmospheric model: Description and development. Prog. Earth Planet. Sci., 1, 18, https://doi.org/10.1186/s40645-014-0018-1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. M. Putman, and P. Düben, 2019: Global cloud-resolving models. Curr. Climate Change Rep., 5, 172184, https://doi.org/10.1007/s40641-019-00131-0.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 14731489, https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2019: DYAMOND: The DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci., 6, 61, https://doi.org/10.1186/s40645-019-0304-z.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsyrulnikov, M., and D. Gayfulin, 2017: A limited-area spatio-temporal stochastic pattern generator for simulation of uncertainties in ensemble applications. Meteor. Z., 26, 549566, https://doi.org/10.1127/metz/2017/0815.

    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., and Coauthors, 2021: Impact of stochastic physics and model resolution on the simulation of tropical cyclones in climate GCMs. J. Climate, 34, 43154341, https://doi.org/10.1175/JCLI-D-20-0507.1.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2015: Mountain waves and wakes generated by South Georgia: Implications for drag parametrization. Quart. J. Roy. Meteor. Soc., 141, 28132827, https://doi.org/10.1002/qj.2566.

    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 2014: Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods, 12, 351362, https://doi.org/10.4319/lom.2014.12.351.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 1999: Toward an ultra-simple spectral gravity wave parameterization for general circulation models. Earth Planets Space, 51, 475484, https://doi.org/10.1186/BF03353209.

    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office unified model. Quart. J. Roy. Meteor. Soc., 129, 19892010, https://doi.org/10.1256/qj.02.133.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., 2014: Increasing horizontal resolution in numerical weather prediction and climate simulations: Illusion or panacea? Philos. Trans. Roy. Soc., A372, 20130289, https://doi.org/10.1098/rsta.2013.0289.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2012: Climatic impacts of stochastic fluctuations in air–sea fluxes. Geophys. Res. Lett., 39, L10705, https://doi.org/10.1029/2012GL051813.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office unified model. Quart. J. Roy. Meteor. Soc., 125, 16071636, https://doi.org/10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Search Google Scholar
    • Export Citation
  • Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., and Coauthors, 2018: Systematic errors in weather and climate models: Nature, origins, and ways forward. Bull. Amer. Meteor. Soc., 99, ES67ES70, https://doi.org/10.1175/BAMS-D-17-0287.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Q. Zhang, D. Johnson, and W.-K. Tao, 2002: Parameterization of wind gustiness for the computation of ocean surface fluxes at different spatial scales. Mon. Wea. Rev., 130, 21252133, https://doi.org/10.1175/1520-0493(2002)130<2125:POWGFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 410 410 32
Full Text Views 195 195 14
PDF Downloads 210 210 17