Relationships between 10 Years of Radar-Observed Supercell Characteristics and Hail Potential

Cameron R. Homeyer aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
,
Elisa M. Murillo aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Elisa M. Murillo in
Current site
Google Scholar
PubMed
Close
, and
Matthew R. Kumjian bDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data from few storms and in isolation from other radar metrics. This study leverages a 10-yr record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail–producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing midaltitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and copolar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cameron R. Homeyer, chomeyer@ou.edu

Abstract

Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data from few storms and in isolation from other radar metrics. This study leverages a 10-yr record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail–producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing midaltitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and copolar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cameron R. Homeyer, chomeyer@ou.edu
Save
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), https://ejssm.com/ojs/index.php/site/article/view/60.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. J. Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, 2020: Understanding hail in the earth system. Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665.

    • Search Google Scholar
    • Export Citation
  • Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., and R. Wexler, 1963: Back-scatter by oblate ice spheroids. J. Atmos. Sci., 20, 4861, https://doi.org/10.1175/1520-0469(1963)020<0048:BSBOIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. N. Bringi, 1984: Differential radar scattering properties of model hail and mixed-phase hydrometeors. Radio Sci., 19, 5866, https://doi.org/10.1029/RS019i001p00058.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990a: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583, https://doi.org/10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990b: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), https://ejssm.com/ojs/index.php/site/article/view/34.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and L. J. Battan, 1982: Radar backscattering of microwaves by spongy ice spheres. J. Atmos. Sci., 39, 26232628, https://doi.org/10.1175/1520-0469(1982)039<2623:RBOMBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boustead, J. M., 2008: Using maximum storm-top divergence and the vertical freezing level to forecast hail size. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P6.6, https://ams.confex.com/ams/pdfpapers/142145.pdf.

  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, https://doi.org/10.1002/qj.49710243303.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., 2018: Observations of right-moving supercell motion forecast errors. Wea. Forecasting, 33, 145159, https://doi.org/10.1175/WAF-D-17-0133.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. B. Wilson, M. S. Van Den Broeke, and D. J. Healey, 2022: Scan-by-scan storm-motion deviations for concurrent tornadic and nontornadic supercells. Wea. Forecasting, 37, 749770, https://doi.org/10.1175/WAF-D-21-0153.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Cooney, J. W., K. P. Bowman, C. R. Homeyer, and T. M. Fenske, 2018: Ten-year analysis of tropopause-overshooting convection using GridRad data. J. Geophys. Res. Atmos., 123, 329343, https://doi.org/10.1002/2017JD027718.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 167–222, https://doi.org/10.1175/0065-9401-28.50.167.

  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Search Google Scholar
    • Export Citation
  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, https://doi.org/10.1175/JAM2529.1.

    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., Jr., 1958: Analysis of severe convective storms observed by radar. J. Meteor., 15, 4450, https://doi.org/10.1175/1520-0469(1958)015<0044:AOSCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., Jr., 1959: Analysis of severe convective storms observed by radar—II. J. Meteor., 16, 281287, https://doi.org/10.1175/1520-0469(1959)016<0281:AOSCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donavon, R. A., and K. A. Jungbluth, 2007: Evaluation of a technique for radar identification of large hail across the upper Midwest and central plains of the United States. Wea. Forecasting, 22, 244254, https://doi.org/10.1175/WAF1008.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp., https://doi.org/10.1016/C2009-0-22358-0.

  • Duda, J. D., and W. A. Gallus Jr., 2010: Spring and summer Midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, https://doi.org/10.1175/2009WAF2222338.1.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and B. E. Martner, 1978: The relationship between radar reflectivity factor and hail at the ground for northeast Colorado thunderstorms. J. Appl. Meteor., 17, 13351341, https://doi.org/10.1175/1520-0450(1978)017<1335:TRBRRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. L. Thompson, 1998: Nationwide comparisons of hail size with the WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Wea. Forecasting, 13, 277285, https://doi.org/10.1175/1520-0434(1998)013<0277:NCOHSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feist, M. M., C. D. Westbrook, P. A. Clark, T. H. M. Stein, H. W. Lean, and A. J. Stirling, 2019: Statistics of convective cloud turbulence from a comprehensive turbulence retrieval method for radar observations. Quart. J. Roy. Meteor. Soc., 145, 727744, https://doi.org/10.1002/qj.3462.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., C. Converse, W. S. Ashley, and M. Taszarek, 2021: Machine learning classification of significant tornadoes and hail in the United States using ERA5 proximity soundings. Wea. Forecasting, 36, 21432160, https://doi.org/10.1175/WAF-D-21-0056.1.

    • Search Google Scholar
    • Export Citation
  • Geotis, S. G., 1963: Some radar measurements of hailstorms. J. Appl. Meteor., 2, 270275, https://doi.org/10.1175/1520-0450(1963)002<0270:SRMOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gunturi, P., and M. Tippett, 2017: Managing severe thunderstorm risk: Impact of ENSO on U.S. tornado and hail frequencies. Willis Re Tech. Rep., 5 pp., http://www.columbia.edu/∼mkt14/files/WillisRe_Impact_of_ENSO_on_US_Tornado_and_Hail_frequencies_Final.pdf.

  • Gutierrez, R. E., and M. R. Kumjian, 2021: Environmental and radar characteristics of gargantuan hail-producing storms. Mon. Wea. Rev., 149, 25232538, https://doi.org/10.1175/MWR-D-20-0298.1.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, https://doi.org/10.1175/WAF956.1.

    • Search Google Scholar
    • Export Citation
  • Herman, B. M., and L. J. Battan, 1961: Calculations of Mie back-scattering from melting ice spheres. J. Meteor., 18, 468478, https://doi.org/10.1175/1520-0469(1961)018<0468:COMBSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, https://doi.org/10.1175/JAS-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, https://doi.org/10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2021: A 22-year evaluation of convection reaching the stratosphere over the United States. J. Geophys. Res. Atmos., 126, e2021JD034808, https://doi.org/10.1029/2021JD034808.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2022: Algorithm description document for version 4.2 of the three-dimensional Gridded NEXRAD WSR-88D Radar (GridRad) dataset. University of Oklahoma, accessed 10 January 2023, https://gridrad.org.

  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing characteristics of tornadic and nontornadic supercell storms from composite mean analyses of radar observations. Mon. Wea. Rev., 148, 50155040, https://doi.org/10.1175/MWR-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU–CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. R. Kumjian, R. S. Schrom, I. Giammanco, T. Brown-Giammanco, H. Estes, R. Maiden, and A. J. Heymsfield, 2019: Comparisons of electromagnetic scattering properties of real hailstones and spheroids. J. Appl. Meteor. Climatol., 58, 93112, https://doi.org/10.1175/JAMC-D-17-0344.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A. W., and K. E. Sugden, 2014: Evaluation of sounding-derived thermodynamic and wind-related parameters associated with large hail events. Electron. J. Severe Storms Meteor., 9 (5), https://ejssm.com/ojs/index.php/site/article/view/57.

    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and M. M. French, 2022: The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011–20. Wea. Forecasting, 37, 283301, https://doi.org/10.1175/WAF-D-21-0127.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402, https://doi.org/10.1146/annurev.fl.19.010187.002101.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2018: Remote Sensing of Clouds and Precipitation. Springer, 282 pp., https://doi.org/10.1007/978-3-319-72583-3.

  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Y. P. Richardson, T. Meyer, K. A. Kosiba, and J. Wurman, 2018: Resonance scattering effects in wet hail observed with a dual-X-band-frequency, dual-polarization Doppler on Wheels radar. J. Appl. Meteor. Climatol., 57, 27132731, https://doi.org/10.1175/JAMC-D-17-0362.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., K. Lombardo, and S. Loeffler, 2021: The evolution of hail production in simulated supercell storms. J. Atmos. Sci., 78, 34173440, https://doi.org/10.1175/JAS-D-21-0034.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., R. S. Schrom, J. S. Soderholm, and I. M. Giammanco, 2024: Advances in Weather Radar. Vol. 2, Precipitation Science, Scattering, and Processing Algorithms, IET Press, 64 pp.

  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and M. R. Kumjian, 2022: Influences of CAPE on hail production in simulated supercell storms. J. Atmos. Sci., 79, 179204, https://doi.org/10.1175/JAS-D-21-0054.1.

    • Search Google Scholar
    • Export Citation
  • Mather, G. K., D. Treddenick, and R. Parsons, 1976: An observed relationship between the height of the 45 dBZ contours in storm profiles and surface hail reports. J. Appl. Meteor., 15, 13361340, https://doi.org/10.1175/1520-0450(1976)015<1336:AORBTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mirkovic, D., D. S. Zrnić, V. Melnikov, and P. Zhang, 2022: Effects of rough hail scattering on polarimetric variables. IEEE Trans. Geosci. Remote Sens., 60, 114, https://doi.org/10.1109/TGRS.2021.3091907.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021: A 23-year severe hail climatology using GridRad MESH observations. Mon. Wea. Rev., 149, 945958, https://doi.org/10.1175/MWR-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. M., C. R. Homeyer, and K. Q. Allen, 2023: Development and investigation of GridRad-severe, a multiyear severe event radar dataset. Mon. Wea. Rev., 151, 22572277, https://doi.org/10.1175/MWR-D-23-0017.1.

    • Search Google Scholar
    • Export Citation
  • NCEI/NOAA, 2023: NOAA’s storm events database. National Centers for Environmental Information, accessed 7 December 2022, https://www.ncdc.noaa.gov/stormevents/.

  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Geophysical Data Center, 1993: 5-minute Gridded Global Relief Data (ETOPO5). National Geophysical Data Center, NOAA, accessed 7 January 2015, https://doi.org/10.7289/V5D798BF.

  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Search Google Scholar
    • Export Citation
  • Sandmæl, T. N., C. R. Homeyer, K. M. Bedka, J. M. Apke, J. R. Mecikalski, and K. Khlopenkov, 2019: Evaluating the ability of remote sensing observations to identify significantly severe and potentially tornadic storms. J. Appl. Meteor. Climatol., 58, 25692590, https://doi.org/10.1175/JAMC-D-18-0241.1.

    • Search Google Scholar
    • Export Citation
  • School of Meteorology/University of Oklahoma, 2021: GridRad-Severe—Three-dimensional gridded NEXRAD WSR-88D radar data for severe events. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data, accessed 7 January 2023, https://doi.org/10.5065/2B46-1A97.

  • SEDAC, 2018: Gridded population of the world, version 4 (GPWv4): Population density, v4.11. NASA Socioeconomic Data and Applications Center (SEDAC), accessed 7 September 2021, https://doi.org/10.7927/H49C6VHW.

  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and K. L. Elmore, 2004: The use of radial velocity derivatives to diagnose rotation and divergence. 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81827.htm.

  • Smyth, T. J., T. M. Blackman, and A. J. Illingworth, 1999: Observations of oblate hail using dual polarization radar and implications for hail-detection schemes. Quart. J. Roy. Meteor. Soc., 125, 9931016, https://doi.org/10.1002/qj.49712555512.

    • Search Google Scholar
    • Export Citation
  • Solomon, D. L., K. P. Bowman, and C. R. Homeyer, 2016: Tropopause-penetrating convection from three-dimensional gridded NEXRAD data. J. Appl. Meteor. Climatol., 55, 465478, https://doi.org/10.1175/JAMC-D-15-0190.1.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., J. T. Allen, T. Pucik, K. A. Hoogewind, and H. E. Brooks, 2020: Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. J. Climate, 33, 10 26310 286, https://doi.org/10.1175/JCLI-D-20-0346.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., and Coauthors, 2016: On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Mon. Wea. Rev., 144, 737758, https://doi.org/10.1175/MWR-D-15-0100.1.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18, 15211525, https://doi.org/10.1175/1520-0450(1979)018<1521:CFTDOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wendt, N. A., and I. L. Jirak, 2021: An hourly climatology of operational MRMS MESH-diagnosed severe and significant hail with comparisons to storm data hail reports. Wea. Forecasting, 36, 645659, https://doi.org/10.1175/WAF-D-20-0158.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., 1998: The relationship between WSR-88D measured midaltitude rotation and maximum hail size. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 740–743.

  • Witt, A., and S. P. Nelson, 1991: The use of single-Doppler radar for estimating maximum hailstone size. J. Appl. Meteor., 30, 425431, https://doi.org/10.1175/1520-0450(1991)030<0425:TUOSDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. De Wayne Mitchell, and K. W. Thomas, 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. De Wayne Mitchell, J. T. Johnson, and K. W. Thomas, 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., D. W. Burgess, A. Seimon, J. T. Allen, J. C. Snyder, and H. B. Bluestein, 2018: Rapid-scan radar observations of an Oklahoma tornadic hailstorm producing giant hail. Wea. Forecasting, 33, 12631282, https://doi.org/10.1175/WAF-D-18-0003.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1065 1065 102
Full Text Views 579 579 57
PDF Downloads 713 713 66