Marathon versus Sprint: Two Modes of Tropical Cyclone Rapid Intensification in a Global Convection-Permitting Simulation

Falko Judt aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Falko Judt in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7710-9862
,
Rosimar Rios-Berrios aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rosimar Rios-Berrios in
Current site
Google Scholar
PubMed
Close
, and
George H. Bryan aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclones that intensify abruptly experience “rapid intensification.” Rapid intensification remains a formidable forecast challenge, in part because the underlying science has not been settled. One way to reconcile the debates and inconsistencies in the literature is to presume that different forms (or modes) of rapid intensification exist. The present study provides evidence in support of this hypothesis by documenting two modes of rapid intensification in a global convection-permitting simulation and the HURDAT2 database. The “marathon mode” is characterized by a moderately paced and long-lived intensification period, whereas the “sprint mode” is characterized by explosive and short-lived intensification bursts. Differences between the modes were also found in initial vortex structure (well defined versus poorly defined), nature of intensification (symmetric versus asymmetric), and environmental conditions (weak shear versus strong shear). Collectively, these differences indicate that the two modes involve distinct intensification mechanisms. Recognizing the existence of multiple intensification modes may help to better understand and predict rapid intensification by, for example, explaining the lack of consensus in the literature, or by raising awareness that rapid intensification in strongly sheared cyclones is not just an exception to a rule, but a typical process.

Significance Statement

Hurricanes are serious threats to society—in particular those that suddenly and quickly intensify before striking land. Forecasting these “rapid intensification” events is a challenge, in part because we do not fully understand the science behind rapid intensification. This study furthers our understanding of hurricane rapid intensification by documenting that rapid intensification comes in different types. Specifically, we show that one type of rapid intensification happens under conditions that meteorologists have thought would lessen the chances of intensification. Awareness of such a type of rapid intensification could lead to better predictions of hurricane intensity because forecasters are more cognizant of this type of event and the conditions in which they occur.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Falko Judt, fjudt@ucar.edu

Abstract

Tropical cyclones that intensify abruptly experience “rapid intensification.” Rapid intensification remains a formidable forecast challenge, in part because the underlying science has not been settled. One way to reconcile the debates and inconsistencies in the literature is to presume that different forms (or modes) of rapid intensification exist. The present study provides evidence in support of this hypothesis by documenting two modes of rapid intensification in a global convection-permitting simulation and the HURDAT2 database. The “marathon mode” is characterized by a moderately paced and long-lived intensification period, whereas the “sprint mode” is characterized by explosive and short-lived intensification bursts. Differences between the modes were also found in initial vortex structure (well defined versus poorly defined), nature of intensification (symmetric versus asymmetric), and environmental conditions (weak shear versus strong shear). Collectively, these differences indicate that the two modes involve distinct intensification mechanisms. Recognizing the existence of multiple intensification modes may help to better understand and predict rapid intensification by, for example, explaining the lack of consensus in the literature, or by raising awareness that rapid intensification in strongly sheared cyclones is not just an exception to a rule, but a typical process.

Significance Statement

Hurricanes are serious threats to society—in particular those that suddenly and quickly intensify before striking land. Forecasting these “rapid intensification” events is a challenge, in part because we do not fully understand the science behind rapid intensification. This study furthers our understanding of hurricane rapid intensification by documenting that rapid intensification comes in different types. Specifically, we show that one type of rapid intensification happens under conditions that meteorologists have thought would lessen the chances of intensification. Awareness of such a type of rapid intensification could lead to better predictions of hurricane intensity because forecasters are more cognizant of this type of event and the conditions in which they occur.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Falko Judt, fjudt@ucar.edu
Save
  • Alvey, G. R., M. Fischer, P. Reasor, J. Zawislak, and R. Rogers, 2022: Observed processes underlying the favorable vortex repositioning early in the development of Hurricane Dorian (2019). Mon. Wea. Rev., 150, 193213, https://doi.org/10.1175/MWR-D-21-0069.1.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1972: Development of asymmetries in a three-dimensional numerical model of the tropical cyclone. Mon. Wea. Rev., 100, 461476, https://doi.org/10.1175/1520-0493(1972)100<0461:DOAIAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, T., P. Bechtold, and I. Sandu, 2021: Characteristics of convective precipitation over tropical Africa in storm-resolving global simulations. Quart. J. Roy. Meteor. Soc., 147, 43884407, https://doi.org/10.1002/qj.4185.

    • Search Google Scholar
    • Export Citation
  • Biswas, M. K., D. Stark, and L. Carson, 2018: GFDL vortex tracker users’ guide version 3.9a. National Center for Atmospheric Research, Developmental Testbed Center, 35 pp., https://dtcenter.org/sites/default/files/community-code/gfdl/standalone_tracker_UG_v3.9a.pdf.

  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145, 877898, https://doi.org/10.1175/MWR-D-16-0147.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235255, https://doi.org/10.1175/JAS-D-17-0129.1.

    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2019: Cheyenne: HPE/SGI ICE XA System (Climate Simulation Laboratory). National Center for Atmospheric Research, accessed 25 September 2023, https://doi.org/10.5065/D6RX99HX.

  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and D. S. Nolan, 2019: Tropical cyclone diurnal cycle signals in a hurricane nature run. Mon. Wea. Rev., 147, 363388, https://doi.org/10.1175/MWR-D-18-0130.1.

    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., W. M. Putman, N. P. Arnold, D. K. Adams, and G. A. Grell, 2020: Cascading toward a kilometer-scale GCM: Impacts of a scale-aware convection parameterization in the Goddard Earth Observing System GCM. Geophys. Res. Lett., 47, e2020GL087682, https://doi.org/10.1029/2020GL087682.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 10221034, https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523531, https://doi.org/10.1175/2007WAF2007030.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, https://doi.org/10.1175/JCLI-D-12-00432.1.

    • Search Google Scholar
    • Export Citation
  • Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 14771497, https://doi.org/10.1175/JAS-D-17-0343.1.

    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2016: Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles. Mon. Wea. Rev., 144, 43954420, https://doi.org/10.1175/MWR-D-15-0413.1.

    • Search Google Scholar
    • Export Citation
  • Judt, F., and R. Rios-Berrios, 2021: Resolved convection improves the representation of equatorial waves and tropical rainfall variability in a global nonhydrostatic model. Geophys. Res. Lett., 48, e2021GL093265, https://doi.org/10.1029/2021GL093265.

    • Search Google Scholar
    • Export Citation
  • Judt, F., S. S. Chen, and J. Berner, 2016: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles. Quart. J. Roy. Meteor. Soc., 142, 4357, https://doi.org/10.1002/qj.2626.

    • Search Google Scholar
    • Export Citation
  • Judt, F., and Coauthors, 2021: Tropical cyclones in global storm-resolving models. J. Meteor. Soc. Japan, 99, 579602, https://doi.org/10.2151/jmsj.2021-029.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Search Google Scholar
    • Export Citation
  • Kieper, M. E., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, https://doi.org/10.1029/2012GL052115.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, Y. Lin, and X. Wang, 2021: Why does rapid contraction of the radius of maximum wind precede rapid intensification in tropical cyclones? J. Atmos. Sci., 78, 34413453, https://doi.org/10.1175/JAS-D-21-0129.1.

    • Search Google Scholar
    • Export Citation
  • Marchok, T., 2021: Important factors in the tracking of tropical cyclones in operational models. J. Appl. Meteor. Climatol., 60, 12651284, https://doi.org/10.1175/JAMC-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112129, https://doi.org/10.1175/JAS-D-11-0285.1.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 26662681, https://doi.org/10.1175/JAS-D-14-0193.1.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and D. S. Nolan, 2018: Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations. J. Atmos. Sci., 75, 555569, https://doi.org/10.1175/JAS-D-17-0177.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, https://doi.org/10.1175/2010MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 24522463, https://doi.org/10.1175/JAS-D-11-0254.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, https://doi.org/10.1002/qj.2283.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378, https://doi.org/10.1175/MWR-D-11-00293.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2015: Simulation of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 72, 45294551, https://doi.org/10.1175/JAS-D-15-0036.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center identification methods in numerical models. Mon. Wea. Rev., 142, 43264339, https://doi.org/10.1175/MWR-D-14-00044.1.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., 2020: Impacts of radiation and cold pools on the intensity and vortex tilt of weak tropical cyclones interacting with vertical wind shear. J. Atmos. Sci., 77, 669689, https://doi.org/10.1175/JAS-D-19-0159.1.

    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 41494173, https://doi.org/10.1175/JAS-D-18-0070.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, https://doi.org/10.1175/2009JAS3122.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and M. E. O’Neill, 2019: Diurnal cloud and circulation changes in simulated tropical cyclones. Geophys. Res. Lett., 46, 502511, https://doi.org/10.1029/2018GL081302.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018a: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, Y. Jin, D. Hodyss, and J. H. Cossuth, 2018b: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part II: Vortex tilt. Mon. Wea. Rev., 146, 38013825, https://doi.org/10.1175/MWR-D-18-0021.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, D. Hodyss, J. H. Cossuth, Y. Jin, K. C. Viner, and J. M. Schmidt, 2019: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part III: Outflow–environment interaction. Mon. Wea. Rev., 147, 29192940, https://doi.org/10.1175/MWR-D-18-0370.1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. M. Putman, and P. Düben, 2019: Global cloud-resolving models. Curr. Climate Change Rep., 5, 172184, https://doi.org/10.1007/s40641-019-00131-0.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2019: DYAMOND: The DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci., 6, 61, https://doi.org/10.1186/s40645-019-0304-z.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, https://doi.org/10.1175/MWR-D-14-00078.1.

    • Search Google Scholar
    • Export Citation
  • Stone, Ž., G. R. Alvey, J. P. Dunion, M. S. Fischer, D. J. Raymond, R. F. Rogers, S. Sentić, and J. Zawislak, 2023: Thermodynamic contribution to vortex alignment and rapid intensification of Hurricane Sally (2020). Mon. Wea. Rev., 151, 931951, https://doi.org/10.1175/MWR-D-22-0201.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., J. Fang, and Y. Ma, 2022: Structural changes preceding the rapid intensification of Typhoon Lekima (2019) under moderate vertical wind shear. J. Geophys. Res. Atmos., 127, e2022JD036544, https://doi.org/10.1029/2022JD036544.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, https://doi.org/10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., 2022: Forecasting convection with a “scale-aware” Tiedtke cumulus parameterization scheme at kilometer scales. Wea. Forecasting, 37, 14911507, https://doi.org/10.1175/WAF-D-21-0179.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., and Z. Ruan, 2021: Rapid contraction of the radius of maximum tangential wind and rapid intensification of a tropical cyclone. J. Geophys. Res. Atmos., 126, e2020JD033681, https://doi.org/10.1029/2020JD033681.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Qiang Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2385 2385 92
Full Text Views 676 676 33
PDF Downloads 725 725 34