The Downward Transport of Strong Wind by Convective Rolls in a Mediterranean Windstorm

Wahiba Lfarh aLaboratoire d’Aérologie, Université de Toulouse, CNRS, UT3, IRD, Toulouse, France

Search for other papers by Wahiba Lfarh in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0005-6722-0950
,
Florian Pantillon aLaboratoire d’Aérologie, Université de Toulouse, CNRS, UT3, IRD, Toulouse, France

Search for other papers by Florian Pantillon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7205-4428
, and
Jean-Pierre Chaboureau aLaboratoire d’Aérologie, Université de Toulouse, CNRS, UT3, IRD, Toulouse, France

Search for other papers by Jean-Pierre Chaboureau in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4365-8940
Restricted access

Abstract

The devastating winds in extratropical cyclones can be assigned to different mesoscale flows. How these strong winds are transported to the surface is discussed for the Mediterranean windstorm Adrian (Vaia), which caused extensive damage in Corsica in October 2018. A mesoscale analysis based on a kilometer-scale simulation with the Meso-NH model shows that the strongest winds come from a cold conveyor belt (CCB). The focus then shifts to a large-eddy simulation (LES) for which the strongest winds over the sea are located in a convective boundary layer. Convection is organized into coherent turbulent structures in the form of convective rolls. It is their downward branches that contribute most to the nonlocal transport of strong winds from the CCB to the surface layer. On landing, the convective rolls break up because of the complex topography of Corsica. Sensitivity experiments to horizontal grid spacing show similar organization of boundary layer rolls across the resolution. A comparative analysis of the kinetic energy spectra suggests that a grid spacing of 200 m is sufficient to represent the vertical transport of strong winds through convective rolls. Contrary to LES, convective rolls are not resolved in the kilometer-scale simulation and surface winds are overestimated due to excessive momentum transport. These results highlight the importance of convective rolls for the generation of surface wind gusts and the need to better represent them in boundary layer parameterizations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wahiba Lfarh, wahiba.lfarh@aero.obs-mip.fr

Abstract

The devastating winds in extratropical cyclones can be assigned to different mesoscale flows. How these strong winds are transported to the surface is discussed for the Mediterranean windstorm Adrian (Vaia), which caused extensive damage in Corsica in October 2018. A mesoscale analysis based on a kilometer-scale simulation with the Meso-NH model shows that the strongest winds come from a cold conveyor belt (CCB). The focus then shifts to a large-eddy simulation (LES) for which the strongest winds over the sea are located in a convective boundary layer. Convection is organized into coherent turbulent structures in the form of convective rolls. It is their downward branches that contribute most to the nonlocal transport of strong winds from the CCB to the surface layer. On landing, the convective rolls break up because of the complex topography of Corsica. Sensitivity experiments to horizontal grid spacing show similar organization of boundary layer rolls across the resolution. A comparative analysis of the kinetic energy spectra suggests that a grid spacing of 200 m is sufficient to represent the vertical transport of strong winds through convective rolls. Contrary to LES, convective rolls are not resolved in the kilometer-scale simulation and surface winds are overestimated due to excessive momentum transport. These results highlight the importance of convective rolls for the generation of surface wind gusts and the need to better represent them in boundary layer parameterizations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wahiba Lfarh, wahiba.lfarh@aero.obs-mip.fr
Save
  • Atkinson, B. W., and J. Wu Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and H. Solberg, 1922: Life Cycle of Cyclones and the Polar Front Theory of Atmospheric Circulation. Geofysiske Publikationer, 18 pp.

  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brâncuş, M., D. M. Schultz, B. Antonescu, C. Dearden, and S. Ştefan, 2019: Origin of strong winds in an explosive Mediterranean extratropical cyclone. Mon. Wea. Rev., 147, 36493671, https://doi.org/10.1175/MWR-D-19-0009.1.

    • Search Google Scholar
    • Export Citation
  • Brilouet, P.-E., P. Durand, and G. Canut, 2017: The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements. J. Geophys. Res. Atmos., 122, 21152130, https://doi.org/10.1002/2016JD025960.

    • Search Google Scholar
    • Export Citation
  • Brilouet, P.-E., D. Bouniol, F. Couvreux, A. Ayet, C. Granero-Belinchon, M. Lothon, and A. Mouche, 2023: Trade wind boundary layer turbulence and shallow precipitating convection: New insights combining SAR images, satellite brightness temperature, and airborne in situ measurements. Geophys. Res. Lett., 50, e2022GL102180, https://doi.org/10.1029/2022GL102180.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1971: Radar measurements of air motion near fronts. Weather, 26, 320340, https://doi.org/10.1002/j.1477-8696.1971.tb04211.x.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153, https://doi.org/10.1007/978-1-944970-33-8_8.

  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399, https://doi.org/10.1256/qj.02.143.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., D. J. Smart, M. R. Clark, and A. J. Illingworth, 2015: The role of evaporating showers in the transfer of sting-jet momentum to the surface. Quart. J. Roy. Meteor. Soc., 141, 29562971, https://doi.org/10.1002/qj.2581.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1999: Roll and cell convection in wintertime arctic cold-air outbreaks. J. Atmos. Sci., 56, 26132636, https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., and Coauthors, 2019: The October 29, 2018 storm in Northern Italy—An exceptional event and its modeling. Prog. Oceanogr., 178, 102178, https://doi.org/10.1016/j.pocean.2019.102178.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and Coauthors, 2008: A midlatitude precipitating cloud database validated with satellite observations. J. Appl. Meteor. Climatol., 47, 13371353, https://doi.org/10.1175/2007JAMC1731.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., H. Yuan, and S. Gao, 2019: A high-resolution simulation of roll convection over the Yellow Sea during a cold air outbreak. J. Geophys. Res. Atmos., 124, 10 60810 625, https://doi.org/10.1029/2019JD030968.

    • Search Google Scholar
    • Export Citation
  • Clark, P. A., K. A. Browning, and C. Wang, 2005: The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Quart. J. Roy. Meteor. Soc., 131, 22632292, https://doi.org/10.1256/qj.04.36.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, https://doi.org/10.1016/0021-9991(84)90143-8.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, https://doi.org/10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Davolio, S., S. D. Fera, S. Laviola, M. M. Miglietta, and V. Levizzani, 2020: Heavy precipitation over Italy from the Mediterranean storm “Vaia” in October 2018: Assessing the role of an atmospheric river. Mon. Wea. Rev., 148, 35713588, https://doi.org/10.1175/MWR-D-20-0021.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215248, https://doi.org/10.1007/BF00705527.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., V. Kotroni, K. Lagouvardos, and I. Flaounas, 2014: CycloTRACK (v1.0)—Tracking winter extratropical cyclones based on relative vorticity: Sensitivity to data filtering and other relevant parameters. Geosci. Model Dev., 7, 18411853, https://doi.org/10.5194/gmd-7-1841-2014.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., and Coauthors, 2022: Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Wea. Climate Dyn., 3, 173208, https://doi.org/10.5194/wcd-3-173-2022.

    • Search Google Scholar
    • Export Citation
  • Forzieri, G., and Coauthors, 2020: A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data, 12, 257276, https://doi.org/10.5194/essd-12-257-2020.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 26472661, https://doi.org/10.1175/JAS3475.1.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1986: Computations of solar heating of the Earth’s atmosphere—A new parametrization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Friederichs, P., M. Göber, S. Wahl, A. Lenz, and R. Krampitz, 2009: A probabilistic analysis of wind gusts using extreme value statistics. Meteor. Z., 18, 615629, https://doi.org/10.1127/0941-2948/2009/0413.

    • Search Google Scholar
    • Export Citation
  • Gheusi, F., and J. Stein, 2002: Lagrangian description of airflows using Eulerian passive tracers. Quart. J. Roy. Meteor. Soc., 128, 337360, https://doi.org/10.1256/00359000260498914.

    • Search Google Scholar
    • Export Citation
  • Giovannini, L., S. Davolio, M. Zaramella, D. Zardi, and M. Borga, 2021: Multi-model convection-resolving simulations of the October 2018 Vaia storm over Northeastern Italy. Atmos. Res., 253, 105455, https://doi.org/10.1016/j.atmosres.2021.105455.

    • Search Google Scholar
    • Export Citation
  • Glendening, J. W., 1996: Lineal eddy features under strong shear conditions. J. Atmos. Sci., 53, 34303449, https://doi.org/10.1175/1520-0469(1996)053<3430:LEFUSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Granero Belinchon, C., S. G. Roux, N. B. Garnier, P. Tandeo, B. Chapron, and A. Mouche, 2022: Two-dimensional structure functions for characterizing convective rolls in the marine atmospheric boundary layer from Sentinel-1 SAR images. Remote Sens. Lett., 13, 946957, https://doi.org/10.1080/2150704X.2022.2112107.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., and U. Neu, 2015: Cyclones, windstorms and the IMILAST project. Tellus, 67A, 27128, https://doi.org/10.3402/tellusa.v67.27128.

    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, https://doi.org/10.1175/JAS-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Q., J. H. Marsham, D. J. Parker, W. Tian, and T. Weckwerth, 2009: A comparison of roll and nonroll convection and the subsequent deepening moist convection: An LEM case study based on SCMS data. Mon. Wea. Rev., 137, 350365, https://doi.org/10.1175/2008MWR2450.1.

    • Search Google Scholar
    • Export Citation
  • Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 19291969, https://doi.org/10.5194/gmd-11-1929-2018.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., A. Druilhet, and B. Campistron, 1998: Spatial and temporal characteristics of horizontal rolls and cells in the atmospheric boundary layer based on radar and in situ observations. Bound.-Layer Meteor., 89, 407444, https://doi.org/10.1023/A:1001791408470.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., A. Druilhet, B. Campistron, J. L. Redelsperger, and F. Saïd, 2000: Numerical study of the impact of coherent structures on vertical transfers in the atmospheric boundary layer. Bound.-Layer Meteor., 97, 361383, https://doi.org/10.1023/A:1002641728075.

    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. L. Schroeder, P. Dodge, and F. Marks Jr., 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893, https://doi.org/10.1175/2008MWR2273.1.

    • Search Google Scholar
    • Export Citation
  • Ludwig, P., J. G. Pinto, S. A. Hoepp, A. H. Fink, and S. L. Gray, 2015: Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007. Mon. Wea. Rev., 143, 14171437, https://doi.org/10.1175/MWR-D-14-00304.1.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., H. L. Baker, S. L. Gray, J. Methven, and R. S. Plant, 2014: Distinguishing the cold conveyor belt and sting jet airstreams in an intense extratropical cyclone. Mon. Wea. Rev., 142, 25712595, https://doi.org/10.1175/MWR-D-13-00348.1.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, https://doi.org/10.5194/gmd-6-929-2013.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, https://doi.org/10.1175/JAS3508.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2012: Large-eddy simulation of roll vortices in a hurricane boundary layer. J. Atmos. Sci., 69, 35583575, https://doi.org/10.1175/JAS-D-11-0237.1.

    • Search Google Scholar
    • Export Citation
  • Pantillon, F., P. Mascart, J.-P. Chaboureau, C. Lac, J. Escobar, and J. Duron, 2011: Seamless MESO-NH modeling over very large grids. C. R. Mécanique, 339, 136140, https://doi.org/10.1016/j.crme.2010.12.002.

    • Search Google Scholar
    • Export Citation
  • Pantillon, F., B. Adler, U. Corsmeier, P. Knippertz, A. Wieser, and A. Hansen, 2020: Formation of wind gusts in an extratropical cyclone in light of Doppler lidar observations and large-eddy simulations. Mon. Wea. Rev., 148, 353375, https://doi.org/10.1175/MWR-D-19-0241.1.

    • Search Google Scholar
    • Export Citation
  • Parton, G., A. Dore, and G. Vaughan, 2010: A climatology of mid-tropospheric mesoscale strong wind events as observed by the MST radar, Aberystwyth. Meteor. Appl., 17, 340354, https://doi.org/10.1002/met.203.

    • Search Google Scholar
    • Export Citation
  • Pergaud, J., V. Masson, S. Malardel, and F. Couvreux, 2009: A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteor., 132, 83106, https://doi.org/10.1007/s10546-009-9388-0.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Motion and Motion Systems. Vol. I, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Pianezze, J., and C. Barthe, 2019: Rapport de synthèse sur les paramétrisations des flux turbulents par vent fort: ReNovRisk-Cyclones (C3) Action 2 Sous-action 2.2. LACY Tech. Rep. hal-02923749, 25 pp., https://hal.univ-reunion.fr/hal-02923749/file/rapport_renovrisk_flux_oa_sept2019.pdf.

  • Pinto, J. G., F. Pantillon, P. Ludwig, M.-S. Déroche, G. Leoncini, C. C. Raible, L. C. Shaffrey, and D. B. Stephenson, 2019: From atmospheric dynamics to insurance losses: An interdisciplinary workshop on European storms. Bull. Amer. Meteor. Soc., 100, ES175ES178, https://doi.org/10.1175/BAMS-D-19-0026.1.

    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Pope, S. B., 2004: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6, 35, https://doi.org/10.1088/1367-2630/6/1/035.

    • Search Google Scholar
    • Export Citation
  • Raveh-Rubin, S., and H. Wernli, 2016: Large-scale wind and precipitation extremes in the Mediterranean: Dynamical aspects of five selected cyclone events. Quart. J. Roy. Meteor. Soc., 142, 30973114, https://doi.org/10.1002/qj.2891.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, https://doi.org/10.1002/qj.2025.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., D. Ricard, and P. Arbogast, 2020: The downward transport of momentum to the surface in idealized sting-jet cyclones. Quart. J. Roy. Meteor. Soc., 146, 18011821, https://doi.org/10.1002/qj.3767.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 27172737, https://doi.org/10.5194/gmd-11-2717-2018.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2001: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 22052225, https://doi.org/10.1175/1520-0493(2001)129<2205:RTCCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P., 2018: Current gust forecasting techniques, developments and challenges. Adv. Sci. Res., 15, 159172, https://doi.org/10.5194/asr-15-159-2018.

    • Search Google Scholar
    • Export Citation
  • Shestakova, A. A., P. A. Toropov, V. M. Stepanenko, D. E. Sergeev, and I. A. Repina, 2018: Observations and modelling of downslope windstorm in Novorossiysk. Dyn. Atmos. Oceans, 83, 8399, https://doi.org/10.1016/j.dynatmoce.2018.07.001.

    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., and S. Osher, 1988: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77, 439471, https://doi.org/10.1016/0021-9991(88)90177-5.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Slater, T. P., D. M. Schultz, and G. Vaughan, 2017: Near-surface strong winds in a marine extratropical cyclone: Acceleration of the winds and the importance of surface fluxes. Quart. J. Roy. Meteor. Soc., 143, 321332, https://doi.org/10.1002/qj.2924.

    • Search Google Scholar
    • Export Citation
  • Thurston, W., R. J. B. Fawcett, K. J. Tory, and J. D. Kepert, 2016: Simulating boundary-layer rolls with a numerical weather prediction model. Quart. J. Roy. Meteor. Soc., 142, 211223, https://doi.org/10.1002/qj.2646.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, https://doi.org/10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., T. W. Horst, and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127, 21602179, https://doi.org/10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 2018: Guide to instruments and methods of observation. WMO/TD-8, 133 pp., https://community.wmo.int/en/activity-areas/imop/wmo-no_8.

  • Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971002, https://doi.org/10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., K. B. Katsaros, P. G. Black, S. Lehner, J. R. French, and W. M. Drennan, 2008: Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Bound.-Layer Meteor., 128, 173189, https://doi.org/10.1007/s10546-008-9281-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1569 1569 40
Full Text Views 192 192 1
PDF Downloads 225 225 3