The Impact of Surface Drag on the Structure and Evolution of Surface Boundaries Associated with Tornadogenesis in Simulated Supercells

Qin Jiang aDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Qin Jiang in
Current site
Google Scholar
PubMed
Close
and
Daniel T. Dawson II aDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Daniel T. Dawson II in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2079-1247
Restricted access

Abstract

Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.

Significance Statement

Tornado development is sensitive to near-surface processes, including those associated with front-like boundaries between regions of airflow within the parent storm. However, observations and theory are insufficient to understand these phenomena, and numerical simulation remains vital. In our simulations, we find that a change in a parameter that controls how much the near-surface winds are reduced by friction (or drag) can substantially alter the storm behavior and tornado potential. We investigate how surface drag affects the low-level storm structure, the distribution of regions of near-surface rotation, and the development of tornadoes within the simulation. Our results provide insight into the role of surface drag and lead to an improved conceptual model of the near-surface structure of a tornadic storm.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel T. Dawson, dandawson@purdue.edu

Abstract

Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.

Significance Statement

Tornado development is sensitive to near-surface processes, including those associated with front-like boundaries between regions of airflow within the parent storm. However, observations and theory are insufficient to understand these phenomena, and numerical simulation remains vital. In our simulations, we find that a change in a parameter that controls how much the near-surface winds are reduced by friction (or drag) can substantially alter the storm behavior and tornado potential. We investigate how surface drag affects the low-level storm structure, the distribution of regions of near-surface rotation, and the development of tornadoes within the simulation. Our results provide insight into the role of surface drag and lead to an improved conceptual model of the near-surface structure of a tornadic storm.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel T. Dawson, dandawson@purdue.edu
Save
  • Andreas, E. L, and B. B. Hicks, 2002: Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.” J. Atmos. Sci., 59, 26052607, https://doi.org/10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, https://doi.org/10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011, https://doi.org/10.1175/1520-0493(1978)106<0995:MEATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2017: Tilting of horizontal shear vorticity and the development of updraft rotation in supercell thunderstorms. J. Atmos. Sci., 74, 29973020, https://doi.org/10.1175/JAS-D-17-0091.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966, https://doi.org/10.1175/MWR-D-12-00131.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497, https://doi.org/10.1175/2007JAS2516.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2021: Invented forces in supercell models. J. Atmos. Sci., 78, 29272939, https://doi.org/10.1175/JAS-D-21-0082.1.

  • Davies-Jones, R., and H. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114, https://doi.org/10.1029/GM079p0105.

  • Davies-Jones, R., and P. Markowski, 2013: Lifting of ambient air by density currents in sheared environments. J. Atmos. Sci., 70, 12041215, https://doi.org/10.1175/JAS-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., Vol. 2, University of Oklahoma Press, 197–236.

  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, A. Shapiro, J. Milbrandt, and A. D. Schenkman, 2016: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part II: Analysis of buoyancy and dynamic pressure forces in simulated tornado-like vortices. J. Atmos. Sci., 73, 10391061, https://doi.org/10.1175/JAS-D-15-0114.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., B. Roberts, and M. Xue, 2019: A method to control the environmental wind profile in idealized simulations of deep convection with surface friction. Mon. Wea. Rev., 147, 39353954, https://doi.org/10.1175/MWR-D-18-0462.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002: The 8 June 1995 Mclean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186201, https://doi.org/10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 2017: Axisymmetric tornado simulations with a semi-slip boundary. Fluids, 2, 68, https://doi.org/10.3390/fluids2040068.

  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum wind speeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340, https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2022: Transition of near-ground vorticity dynamics during tornadogenesis. J. Atmos. Sci., 79, 467483, https://doi.org/10.1175/JAS-D-21-0181.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., and E. N. Rasmussen, 2021: The influence of ground-relative flow and friction on near-surface storm-relative helicity. J. Atmos. Sci., 78, 21352142, https://doi.org/10.1175/JAS-D-20-0320.1

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and J. M. Lewis, 2004: Sierra Wave Project revisited: 50 years later. Bull. Amer. Meteor. Soc., 85, 11271142, https://doi.org/10.1175/BAMS-85-8-1127.

    • Search Google Scholar
    • Export Citation
  • Guchte, A. V., and J. M. L. Dahl, 2018: Sensitivities of parcel trajectories beneath the lowest scalar model level of a Lorenz vertical grid. Mon. Wea. Rev., 146, 14271435, https://doi.org/10.1175/MWR-D-17-0190.1.

    • Search Google Scholar
    • Export Citation
  • Houser, J. B., N. McGinnis, K. M. Butler, H. B. Bluestein, J. C. Snyder, and M. M. French, 2020: Statistical and empirical relationships between tornado intensity and both topography and land cover using rapid-scan radar observations and a GIS. Mon. Wea. Rev., 148, 43134338, https://doi.org/10.1175/MWR-D-19-0407.1.

    • Search Google Scholar
    • Export Citation
  • Houston, A. L., C. C. Weiss, E. Rasmussen, M. C. Coniglio, C. L. Ziegler, B. Argrow, and E. W. Frew, 2022: Targeted observation by radars and UAS of supercells (TORUS): Summary of the 2019 and 2022 field campaigns. 30th Conf. on Severe Local Storms, Santa Fe, NM, Amer. Meteor. Soc., 7.1B, https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407665.

  • Howells, P. A. C., R. Rotunno, and R. K. Smith, 1988: A comparative study of atmospheric and laboratory-analogue numerical tornado-vortex models. Quart. J. Roy. Meteor. Soc., 114, 801822, https://doi.org/10.1002/qj.49711448113.

    • Search Google Scholar
    • Export Citation
  • Johansson, C., A.-S. Smedman, U. Högström, J. G. Brasseur, and S. Khanna, 2001: Critical test of the validity of Monin–Obukhov similarity during convective conditions. J. Atmos. Sci., 58, 15491566, https://doi.org/10.1175/1520-0469(2001)058<1549:CTOTVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katona, B., and P. Markowski, 2021: Assessing the influence of complex terrain on severe convective environments in northeastern Alabama. Wea. Forecasting, 36, 10031029, https://doi.org/10.1175/WAF-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Katona, B., P. Markowski, C. Alexander, and S. Benjamin, 2016: The influence of topography on convective storm environments in the eastern United States as deduced from the HRRR. Wea. Forecasting, 31, 14811490, https://doi.org/10.1175/WAF-D-16-0038.1.

    • Search Google Scholar
    • Export Citation
  • Kellner, O., and D. Niyogi, 2014: Land surface heterogeneity signature in tornado climatology? An illustrative analysis over Indiana, 1950–2012. Earth Interact., 18, https://doi.org/10.1175/2013EI000548.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Laser, J. J., M. C. Coniglio, P. S. Skinner, and E. N. Smith, 2022: Doppler lidar and mobile radiosonde observation-based evaluation of Warn-on-Forecast System predicted near-supercell environments during TORUS 2019. Wea. Forecasting, 37, 17831804, https://doi.org/10.1175/WAF-D-21-0190.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, https://doi.org/10.1175/MWR-D-11-00351.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2007a: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 21762194, https://doi.org/10.1175/JAS3965.1.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2007b: Near-surface vortex intensification through corner flow collapse. J. Atmos. Sci., 64, 21952209, https://doi.org/10.1175/JAS3966.1.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 19–39, https://doi.org/10.1029/GM079p0019.

  • Lyza, A. W., and K. R. Knupp, 2018: A background investigation of tornado activity across the southern Cumberland Plateau terrain system of northeastern Alabama. Mon. Wea. Rev., 146, 42614278, https://doi.org/10.1175/MWR-D-18-0300.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, https://doi.org/10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. T. Dawson, and J. M. Straka, 2020: Bin-emulating hail melting in three-moment bulk microphysics. J. Atmos. Sci., 77, 33613385, https://doi.org/10.1175/JAS-D-19-0268.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, https://doi.org/10.1175/JAS-D-16-0150.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795823, https://doi.org/10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, and G. Bryan, 2014: The origins of vortex sheets in a simulated supercell thunderstorm. Mon. Wea. Rev., 142, 39443954, https://doi.org/10.1175/MWR-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., N. T. Lis, D. D. Turner, T. R. Lee, and M. S. Buban, 2019: Observations of near-surface vertical wind profiles and vertical momentum fluxes from VORTEX-SE 2017: Comparisons to Monin–Obukhov similarity theory. Mon. Wea. Rev., 147, 38113824, https://doi.org/10.1175/MWR-D-19-0091.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, https://doi.org/10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, J. Wurman, K. Kosiba, and P. Robinson, 2016: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile mesonet and radar observations collected during VORTEX2. Part II: Mesocyclone-scale processes affecting tornado formation, maintenance, and decay. Mon. Wea. Rev., 144, 34413463, https://doi.org/10.1175/MWR-D-15-0411.1.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., 2016: A numerical study of the 6 May 2012 Tsukuba City supercell tornado. Part II: Mechanisms of tornadogenesis. Mon. Wea. Rev., 144, 30773098, https://doi.org/10.1175/MWR-D-15-0122.1.

    • Search Google Scholar
    • Export Citation
  • Mobbs, S., and Coauthors, 2005: Observations of downslope winds and rotors in the Falkland Islands. Quart. J. Roy. Meteor. Soc., 131, 329351, https://doi.org/10.1256/qj.04.51.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 36993705, https://doi.org/10.1175/MWR-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2014: Vorticity evolution leading to tornadogenesis and tornadogenesis failure in simulated supercells. J. Atmos. Sci., 71, 12011217, https://doi.org/10.1175/JAS-D-13-0219.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., and M. Xue, 2017: The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 74, 30553077, https://doi.org/10.1175/JAS-D-16-0364.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, https://doi.org/10.1175/JAS-D-15-0332.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, and D. T. Dawson, 2020: The effect of surface drag strength on mesocyclone intensification and tornadogenesis in idealized supercell simulations. J. Atmos. Sci., 77, 16991721, https://doi.org/10.1175/JAS-D-19-0109.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 2013: The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech., 45, 5984, https://doi.org/10.1146/annurev-fluid-011212-140639.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci., 69, 33723390, https://doi.org/10.1175/JAS-D-12-038.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130154, https://doi.org/10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and D. T. Dawson, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, https://doi.org/10.1175/JAS-D-15-0112.1.

    • Search Google Scholar
    • Export Citation
  • Schueth, A., C. Weiss, and J. M. L. Dahl, 2021: Comparing observations and simulations of the streamwise vorticity current and the forward-flank convergence boundary in a supercell storm. Mon. Wea. Rev., 149, 16511671, https://doi.org/10.1175/MWR-D-20-0251.1.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441, https://doi.org/10.1175/MWR3131.1.

    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, J. L. Schroeder, L. J. Wicker, and M. I. Biggerstaff, 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 37303749, https://doi.org/10.1175/MWR-D-10-05078.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, L. J. Wicker, C. K. Potvin, and D. C. Dowell, 2015: Forcing mechanisms for an internal rear-flank downdraft momentum surge in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 143, 43054330, https://doi.org/10.1175/MWR-D-15-0164.1.

    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, https://doi.org/10.1029/2008GL035866.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and B. E. Martner, 1992: Observations of a Colorado tornado. Part II: Combined photogrammetric and Doppler radar analysis. Mon. Wea. Rev., 120, 522543, https://doi.org/10.1175/1520-0493(1992)120<0522:OOACTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Y. Pan, and P. M. Markowski, 2020: The influence of turbulence memory on idealized tornado simulations. Mon. Wea. Rev., 148, 48754892, https://doi.org/10.1175/MWR-D-20-0031.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., D. C. Dowell, J. L. Schroeder, P. S. Skinner, A. E. Reinhart, P. M. Markowski, and Y. P. Richardson, 2015: A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts. Mon. Wea. Rev., 143, 27362753, https://doi.org/10.1175/MWR-D-14-00307.1.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1993: Numerical simulation of tornadogenesis within a supercell thunderstorm. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 75–88, https://doi.org/10.1029/GM079p0075.

All Time Past Year Past 30 Days
Abstract Views 3565 3565 29
Full Text Views 344 344 12
PDF Downloads 323 323 20