On Synergy between Convective Equatorial Signals and Monsoon Intraseasonal Oscillations in the Bay of Bengal

Jaynise M. Pérez Valentín aUniversity of Notre Dame, Notre Dame, Indiana

Search for other papers by Jaynise M. Pérez Valentín in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6582-2230
,
Harindra J. S. Fernando aUniversity of Notre Dame, Notre Dame, Indiana

Search for other papers by Harindra J. S. Fernando in
Current site
Google Scholar
PubMed
Close
,
G. S. Bhat bIndian Institute of Science, Bengaluru, India

Search for other papers by G. S. Bhat in
Current site
Google Scholar
PubMed
Close
,
Hemantha W. Wijesekera cU.S. Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Hemantha W. Wijesekera in
Current site
Google Scholar
PubMed
Close
,
Jayesh Phadtare aUniversity of Notre Dame, Notre Dame, Indiana

Search for other papers by Jayesh Phadtare in
Current site
Google Scholar
PubMed
Close
, and
Edgar Gonzalez aUniversity of Notre Dame, Notre Dame, Indiana

Search for other papers by Edgar Gonzalez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship between eastward-propagating convective equatorial signals (CES) along the equatorial Indian Ocean (EIO) and the northward-propagating monsoon intraseasonal oscillations (MISOs) in the Bay of Bengal (BOB) was studied using observational datasets acquired during the 2018 and 2019 MISO-BOB field campaigns. Convective envelopes of MISOs originating from just south of the BOB were associated with both strong and weak eastward CES (average speed ∼6.4 m s−1). Strong CES contributed to ∼20% of the precipitation budget of BOB, and they spurred northward-propagating convective signals that matched the canonical speed of MISOs (1–2 m s−1). In contrast, weak CES contributed to ∼14% of the BOB precipitation budget, and they dissipated without significant northward propagation. Eastward-propagating intraseasonal oscillations (ISOs; period 30–60 days) and convectively coupled Kelvin waves (CCKWs; period 4–15 days) accounted for most precipitation variability across the EIO during the 2019 boreal summer as compared with that of 2018. An agreement could be noted between high moisture content in the midtroposphere and the active phases of CCKWs and ISOs for two observational locations in the BOB. Basin-scale thermodynamic conditions prior to the arrival of strong or weak CES revealed warmer or cooler sea surface temperatures, respectively. Flux measurements aboard a research vessel suggest that the evolution of MISOs associated with strong CES are signified by local enhanced air–sea interactions, in particular the supply of local moisture and sensible heat, which could enhance deep convection and further moisten the upper troposphere.

Significance Statement

Eastward-propagating convective signals along the equatorial Indian Ocean and their relationship to the northward-propagating spells of rainfall that lead to moisture variability in the Bay of Bengal are studied for the 2018 and 2019 southwest monsoon seasons using observational datasets acquired during field campaigns. Strong convective equatorial signals spurred northward-propagating convection, as compared with weak signals that dissipated without significant northward propagation. Wave spectral analysis showed CCKWs (period 4–15 days), and eastward ISOs (period 30–60 days) accounted for most of the precipitation variability, with the former dominating during the 2018 boreal summer. High moisture periods observed from radiosonde measurements show agreement with the active phases of CCKWs and ISOs.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Air-Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Jaynise M. Pérez Valentín, jperez9@nd.edu

Abstract

The relationship between eastward-propagating convective equatorial signals (CES) along the equatorial Indian Ocean (EIO) and the northward-propagating monsoon intraseasonal oscillations (MISOs) in the Bay of Bengal (BOB) was studied using observational datasets acquired during the 2018 and 2019 MISO-BOB field campaigns. Convective envelopes of MISOs originating from just south of the BOB were associated with both strong and weak eastward CES (average speed ∼6.4 m s−1). Strong CES contributed to ∼20% of the precipitation budget of BOB, and they spurred northward-propagating convective signals that matched the canonical speed of MISOs (1–2 m s−1). In contrast, weak CES contributed to ∼14% of the BOB precipitation budget, and they dissipated without significant northward propagation. Eastward-propagating intraseasonal oscillations (ISOs; period 30–60 days) and convectively coupled Kelvin waves (CCKWs; period 4–15 days) accounted for most precipitation variability across the EIO during the 2019 boreal summer as compared with that of 2018. An agreement could be noted between high moisture content in the midtroposphere and the active phases of CCKWs and ISOs for two observational locations in the BOB. Basin-scale thermodynamic conditions prior to the arrival of strong or weak CES revealed warmer or cooler sea surface temperatures, respectively. Flux measurements aboard a research vessel suggest that the evolution of MISOs associated with strong CES are signified by local enhanced air–sea interactions, in particular the supply of local moisture and sensible heat, which could enhance deep convection and further moisten the upper troposphere.

Significance Statement

Eastward-propagating convective signals along the equatorial Indian Ocean and their relationship to the northward-propagating spells of rainfall that lead to moisture variability in the Bay of Bengal are studied for the 2018 and 2019 southwest monsoon seasons using observational datasets acquired during field campaigns. Strong convective equatorial signals spurred northward-propagating convection, as compared with weak signals that dissipated without significant northward propagation. Wave spectral analysis showed CCKWs (period 4–15 days), and eastward ISOs (period 30–60 days) accounted for most of the precipitation variability, with the former dominating during the 2018 boreal summer. High moisture periods observed from radiosonde measurements show agreement with the active phases of CCKWs and ISOs.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Air-Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Jaynise M. Pérez Valentín, jperez9@nd.edu
Save
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, https://doi.org/10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Balachandran, S., B. Geetha, K. Ramesh, R. V. Deepa, Y. P. Mourya, and K. S. Rakhil, 2019: Southern Peninsular India: Southwest monsoon, 2019—Report. IMD Chennai Scientific Rep. IMDC-SR/07, 42 pp.

  • Blanford, H. F., 1886: Rainfall of India. Monsoon Monogr., No. 3, India Meteorological Department, 658 pp.

  • Choudhury, A. D., and R. Krishnan, 2011: Dynamical response of the South Asian monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci., 68, 13471363, https://doi.org/10.1175/2011JAS3705.1.

    • Search Google Scholar
    • Export Citation
  • Dhar, O. N., and S. Nandargi, 2003: Hydrometeorological aspects of floods in India. Nat. Hazards, 28, 133, https://doi.org/10.1023/A:1021199714487.

    • Search Google Scholar
    • Export Citation
  • Ferrett, S., G. Y. Yang, S. J. Woolnough, J. Methven, K. Hodges, and C. E. Holloway, 2020: Linking extreme precipitation in Southeast Asia to equatorial waves. Quart. J. Roy. Meteor. Soc., 146, 665684, https://doi.org/10.1002/qj.3699.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2012: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K. M. Lau and D. E. Waliser, Eds., Springer, 19–62.

  • Goswami, B. N., and P. K. Xavier, 2005: Dynamics of “internal” interannual variability of the Indian summer monsoon in a GCM. J. Geophys. Res., 110, D24104, https://doi.org/10.1029/2005JD006042.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, 14314434, https://doi.org/10.1029/2002GL016734.

    • Search Google Scholar
    • Export Citation
  • Halley, E., 1686: An historical account of the trade winds, and monsoons, observable in the seas between and near the tropics, with an attempt to assign the physical cause of the said winds. Philos. Trans. Roy. Soc., 16, 153168, https://doi.org/10.1098/rstl.1686.0026.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, https://doi.org/10.1175/JCLI4252.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, https://doi.org/10.1007/978-90-481-2915-7_1.

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., 2020: Extension of the bimodal intraseasonal oscillation index using JRA-55 reanalysis. Climate Dyn., 54, 919933, https://doi.org/10.1007/s00382-019-05037-z.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., 2021: The Boreal Summer Intraseasonal Oscillation (BSISO): A review. J. Meteor. Soc. Japan, 99, 933972, https://doi.org/10.2151/jmsj.2021-045.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., K. M. Weickmann, and J. E. Kutzbach, 1986: Global-scale intraseasonal oscillations of outgoing longwave radiation and 250-mb zonal wind during Northern Hemisphere summer. Mon. Wea. Rev., 114, 605623, https://doi.org/10.1175/1520-0493(1986)114<0605:GSIOOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, https://doi.org/10.1175/JCLI3981.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., and C. Jacobi, 2015: The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int. J. Climatol., 35, 14651483, https://doi.org/10.1002/joc.4069.

    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., and M. R. Respati, 2021: Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. Int. J. Climatol., 41, 24182440, https://doi.org/10.1002/joc.6967.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2009: A 9-season TRMM observation of the austral summer MJO and low-frequency equatorial waves. J. Meteor. Soc. Japan, 87A, 295315, https://doi.org/10.2151/JMSJ.87A.295.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1965: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Mausam, B., 2018: Southwest Monsoon (June–July–August–September). Indian Meteorological Department Annual Report, 2018—Report. IMD, 17–22, https://metnet.imd.gov.in/imdnews/ar2018.pdf.

  • Peatman, S. C., J. Schwendike, C. E. Birch, J. H. Marsham, A. J. Matthews, and G. Yang, 2021: A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO, and equatorial waves. J. Climate, 34, 89338953, https://doi.org/10.1175/JCLI-D-21-0263.1.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., and D. R. Sikka, 2013: Variability of the TRMM-PR total and convective and stratiform rain fractions over the Indian region during the summer monsoon. Climate Dyn., 41, 2144, https://doi.org/10.1007/s00382-012-1502-1.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., A. Hazra, H. S. Chaudhari, S. K. Saha, F. Paulose, S. Krishna, P. M. Krishna, and S. A. Rao, 2018: Hindcast skill improvement in Climate Forecast System (CFSv2) using modified cloud scheme. Int. J. Climatol., 38, 29943012, https://doi.org/10.1002/joc.5478.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, https://doi.org/10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Ratna, S. B., A. Cherchi, T. J. Osborn, M. Joshi, and U. Uppara, 2021: The extreme positive Indian Ocean dipole of 2019 and associated Indian summer monsoon rainfall response. Geophys. Res. Lett., 48, e2020GL091497, https://doi.org/10.1029/2020GL091497.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, https://doi.org/10.1175/2007JAS2345.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., G. Kiladis, and J. Dias, 2020: The diurnal cycle of rainfall and the convectively coupled equatorial waves over the Maritime Continent. J. Climate, 33, 33073331, https://doi.org/10.1175/JCLI-D-19-0043.1.

    • Search Google Scholar
    • Export Citation
  • Sankar, V., P. Vijaykumar, S. Abhilash, and K. Mohanakumar, 2021: Influence of the strongest positive Indian Ocean Dipole and an El Niño Modoki event on the 2019 Indian summer monsoon. Dyn. Atmos. Oceans, 95, 101235, https://doi.org/10.1016/j.dynatmoce.2021.101235.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., and M. Ravichandran, 2001: Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys. Res. Lett., 28, 20332036, https://doi.org/10.1029/2000GL012548.

    • Search Google Scholar
    • Export Citation
  • Sharmila, S., and Coauthors, 2013: Role of ocean-atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Climate Dyn., 41, 16511669, https://doi.org/10.1007/s00382-013-1854-1.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E., and Coauthors, 2021: Bay of Bengal intraseasonal oscillations and the 2018 monsoon onset. Bull. Amer. Meteor. Soc., 102, E1936E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze, 2016: Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. J. Atmos. Sci., 73, 47534774, https://doi.org/10.1175/JAS-D-16-0022.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and T. Li, 2020: Effect of vertical moist static energy advection on MJO eastward propagation: Sensitivity to analysis domain. Climate Dyn., 54, 20292039, https://doi.org/10.1007/s00382-019-05101-8.

    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Ma, A. H. Sobel, and M. K. Tippett, 2018: Propagation characteristics of BSISO indices. Geophys. Res. Lett., 45, 99349943, https://doi.org/10.1029/2018GL078321.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., T. Palmer, M. Yanai, R. Tomas, V. Magaña, J. Shukla, and A. Yasunari, 1998: Monsoons: Processes, predictability and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and Coauthors, 2016: Air-sea interaction in the Bay of Bengal. Oceanography, 29, 2837, https://doi.org/10.5670/oceanog.2016.36.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witman, S., 2017: Mysterious intraseasonal oscillations in monsoons. Eos, 98, https://doi.org/10.1029/2017EO071313.

  • Yang, J., Q. Liu, S. P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, https://doi.org/10.1175/JAS-D-11-033.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 895 407 22
Full Text Views 182 153 10
PDF Downloads 163 132 7