Simultaneous Assimilation of Planetary Boundary Layer Observations from Radar and All-Sky Satellite Observations to Improve Forecasts of Convection Initiation

Keenan C. Eure aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Keenan C. Eure in
Current site
Google Scholar
PubMed
Close
,
Paul D. Mykolajtchuk aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul D. Mykolajtchuk in
Current site
Google Scholar
PubMed
Close
,
Yunji Zhang aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yunji Zhang in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
,
Fuqing Zhang aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Steven J. Greybush aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven J. Greybush in
Current site
Google Scholar
PubMed
Close
, and
Matthew R. Kumjian aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate predictions of the location and timing of convection initiation (CI) remain a challenge, even in high-resolution convection-allowing models (CAMs). Many of the processes necessary for daytime CI are rooted in the planetary boundary layer (PBL), which numerical models struggle to accurately predict. To improve ensemble forecasts of the PBL and subsequent CI forecasts in CAM ensembles, we explore the use of underused data from both the GOES-16 satellite and the national network of WSR-88D radars. The GOES-16 satellite provides observations of brightness temperature (BT) to better analyze cloud structures, while the WSR-88D radars provide PBL height estimates and clear-air radial wind velocity observations to better analyze PBL structures. The CAM uses the Advanced Research Weather Research and Forecasting (WRF-ARW) Model at 3-km horizontal grid spacing. The ensemble consists of 40 members and observations are assimilated using the Gridpoint Statistical Interpolation (GSI) ensemble Kalman filter (EnKF) system. To evaluate the influence of each observation type on CI, conventional, WSR-88D, and GOES-16 observations are assimilated separately and jointly over a 4-h period and the resulting ensemble analyses and forecasts are compared with available observations for a CI event on 18 May 2018. Results show that the addition of the WSR-88D and GOES-16 observations improves the CI forecasts out several hours in terms of timing and location for this case.

Significance Statement

The location and timing of new thunderstorm development is an important component of severe weather forecasts. Yet the prediction of thunderstorm development in weather prediction models remains challenging. This study explores using a combination of underused satellite and radar observations to better define the atmospheric state used to start the weather prediction models, with the hope that this will lead to better forecasts of new thunderstorm development. Results show that underused observations from routinely available Doppler weather radars and a geostationary satellite, all of which are currently available, can work synergistically to improve forecasts of the location and timing of severe thunderstorm development.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

F. Zhang: Deceased

Corresponding author: Keenan C. Eure, kce115@psu.edu

Abstract

Accurate predictions of the location and timing of convection initiation (CI) remain a challenge, even in high-resolution convection-allowing models (CAMs). Many of the processes necessary for daytime CI are rooted in the planetary boundary layer (PBL), which numerical models struggle to accurately predict. To improve ensemble forecasts of the PBL and subsequent CI forecasts in CAM ensembles, we explore the use of underused data from both the GOES-16 satellite and the national network of WSR-88D radars. The GOES-16 satellite provides observations of brightness temperature (BT) to better analyze cloud structures, while the WSR-88D radars provide PBL height estimates and clear-air radial wind velocity observations to better analyze PBL structures. The CAM uses the Advanced Research Weather Research and Forecasting (WRF-ARW) Model at 3-km horizontal grid spacing. The ensemble consists of 40 members and observations are assimilated using the Gridpoint Statistical Interpolation (GSI) ensemble Kalman filter (EnKF) system. To evaluate the influence of each observation type on CI, conventional, WSR-88D, and GOES-16 observations are assimilated separately and jointly over a 4-h period and the resulting ensemble analyses and forecasts are compared with available observations for a CI event on 18 May 2018. Results show that the addition of the WSR-88D and GOES-16 observations improves the CI forecasts out several hours in terms of timing and location for this case.

Significance Statement

The location and timing of new thunderstorm development is an important component of severe weather forecasts. Yet the prediction of thunderstorm development in weather prediction models remains challenging. This study explores using a combination of underused satellite and radar observations to better define the atmospheric state used to start the weather prediction models, with the hope that this will lead to better forecasts of new thunderstorm development. Results show that underused observations from routinely available Doppler weather radars and a geostationary satellite, all of which are currently available, can work synergistically to improve forecasts of the location and timing of severe thunderstorm development.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

F. Zhang: Deceased

Corresponding author: Keenan C. Eure, kce115@psu.edu
Save
  • Aksoy, A., D. C. Dowell, and C. A. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for the assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banghoff, J. R., D. J. Stensrud, and M. R. Kumjian, 2018: Convective boundary layer depth estimation from S-band dual-polarization radar. J. Atmos. Oceanic Technol., 35, 17231733, https://doi.org/10.1175/JTECH-D-17-0210.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17, 99114, https://doi.org/10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinetic properties of a wind field using Doppler radar. J. Appl. Meteor. Climatol., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 2007: The convective storm initiation project. Bull. Amer. Meteor. Soc., 88, 19391956, https://doi.org/10.1175/BAMS-88-12-1939.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., J. A. Otkin, T. A. Jones, S. Koch, and D. J. Stensrud, 2016: Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE. Mon. Wea. Rev., 144, 31593180, https://doi.org/10.1175/MWR-D-15-0366.1.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and J. Sun, 2002: Assimilating radar, surface and profiler data for the Sydney 2000 forecast demonstration project. J. Atmos. Oceanic Technol., 19, 888898, https://doi.org/10.1175/1520-0426(2002)019<0888:ARSAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dang, R., X. Qiu, Y. Yang, and S. Zhang, 2022: Observation system simulation experiments (OSSEs) for assimilation of the planetary boundary-layer height (PBLH) using the EnSRF technique. Quart. J. Roy. Meteor. Soc., 148, 11841207, https://doi.org/10.1002/qj.4254.

    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, and D. J. Stensrud, 2019: An evaluation of the impact of assimilating AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast of a nocturnal convection initiation event during the PECAN field campaign. Mon. Wea. Rev., 147, 27392764, https://doi.org/10.1175/MWR-D-18-0423.1.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., Z. Li, H. Lean, N. Roberts, and S. Ballard, 2009: Impact of data assimilation on forecasting convection over the United Kingdom using a high-resolution version of the Met Office Unified Model. Mon. Wea. Rev., 137, 15621584, https://doi.org/10.1175/2008MWR2561.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eilts, M. D., and S. D. Smith, 1990: Efficient dealiasing of Doppler velocities using local environment constraints. J. Atmos. Oceanic Technol., 7, 118128, https://doi.org/10.1175/1520-0426(1990)007<0118:EDODVU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 11911217, https://doi.org/10.1002/qj.3202.

    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and W. M. Angevine, 1998: Convective boundary layer height measurement with wind profiles and comparison to cloud base. J. Atmos. Oceanic Technol., 15, 13311338, https://doi.org/10.1175/1520-0426(1998)015<1331:CBLHMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)—version 1. NOAA Tech. Rep. NESDIS 122, 40 pp., https://repository.library.noaa.gov/view/noaa/1157.

  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Search Google Scholar
    • Export Citation
  • Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecasts of a tornadic supercell event. Wea. Forecasting, 34, 14531476, https://doi.org/10.1175/WAF-D-18-0200.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, https://doi.org/10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., X. Wang, C. Kerr, A. Mahre, T.-Y. Yu, and D. Bodine, 2020: Impact of assimilating future clear-air radial velocity observations from phased-array radar on a supercell thunderstorm forecast: An observing system simulation experiment study. Mon. Wea. Rev., 148, 38253845, https://doi.org/10.1175/MWR-D-19-0391.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., X. Wang, A. Mahre, T.-Y. Yu, and D. Bodine, 2022: Impacts of assimilating future clear-air radial velocity observations from phased-array radar on convection initiation forecasts: An observing system simulation experiment study. Mon. Wea. Rev., 150, 15631583, https://doi.org/10.1175/MWR-D-21-0199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, and T. A. Jones, 2022: Impacts of assimilating GOES-16 ABI Channels 9 and 10 clear air and cloudy radiance observations with additive inflation and adaptive observation error in GSI-EnKF for a case of rapidly evolving severe supercells. J. Geophys. Res. Atmos., 127, e2021JD036157, https://doi.org/10.1029/2021JD036157.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and B. E. Mapes, 2001: Mesoscale processes and severe convective weather. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 71–122, https://doi.org/10.1175/0065-9401-28.50.71.

  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. J. Stensrud, L. J. Wicker, P. Minnis, and R. Palikonda, 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165194, https://doi.org/10.1175/MWR-D-14-00180.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and Coauthors, 2020: Assimilation of GOES-16 radiances and retrievals into the Warn-on-Forecast System. Mon. Wea. Rev., 148, 18291859, https://doi.org/10.1175/MWR-D-19-0379.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, https://doi.org/10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., D. J. Stensrud, and X. Wang, 2019: Diagnosing convective dependencies on near-storm environments using ensemble sensitivity analyses. Mon. Wea. Rev., 147, 495517, https://doi.org/10.1175/MWR-D-18-0140.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., M. Hu, G. Ge, C. Zhou, D. Stark, H. Shao, K. Newman, and J. Whitaker, 2018: Ensemble Kalman filter (EnKF) user’s guide version 1.3. Developmental Testbed Center, 81 pp., https://dtcenter.org/sites/default/files/community-code/enkf/docs/users-guide/EnKF_UserGuide_v1.3.pdf.

  • Lock, N. A., and A. L. Houston, 2014: Empirical examination of the factors regulating thunderstorm initiation. Mon. Wea. Rev., 142, 240258, https://doi.org/10.1175/MWR-D-13-00082.1.

    • Search Google Scholar
    • Export Citation
  • Martin, W. J., and M. Xue, 2006: Initial condition sensitivity analysis of a mesoscale forecast using very large ensembles. Mon. Wea. Rev., 134, 192207.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748, https://doi.org/10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., R. J. Doviak, D. S. Zrnić, and D. J. Stensrud, 2011: Mapping Bragg scatter with a polarimetric WSR-88D. J. Atmos. Oceanic Technol., 28, 12731285, https://doi.org/10.1175/JTECH-D-10-05048.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., R. J. Doviak, D. S. Zrnić, and D. J. Stensrud, 2013: Structures of Bragg scatter observed with the polarimetric WSR-88D. J. Atmos. Oceanic Technol., 30, 12531258, https://doi.org/10.1175/JTECH-D-12-00210.1.

    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometeor initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 32413258, https://doi.org/10.1175/MWR-D-17-0367.1.

    • Search Google Scholar
    • Export Citation
  • Minamide, M., and D. J. Posselt, 2022: Using ensemble data assimilation to explore the environmental controls on the initiation and predictability of moist convection. J. Atmos. Sci., 79, 11511169, https://doi.org/10.1175/JAS-D-21-0140.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada Level 3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • NOAA/National Centers for Environmental Information, 2022: U.S. Billion-Dollar Weather and Climate Disasters. NOAA/National Centers for Environmental Information, accessed 27 June 2022, https://www.ncdc.noaa.gov/billions/.

  • Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the MYNN-EDMF scheme and the coupling to other components in WRF-ARW. NOAA Tech. Memo. OAR GSD 61, 37 pp., https://doi.org/10.25923/n9wm-be49.

  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., W. S. Burgett, K. B. Haynie, I. Sonmez, G. D. Skwira, A. L. Doggett, and J. W. Lipe, 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211222, https://doi.org/10.1175/JTECH-1690.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2017: A comparison of methods used to populate neighborhood-based contingency tables for high-resolution forecast verification. Wea. Forecasting, 32, 733741, https://doi.org/10.1175/WAF-D-16-0187.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts for convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface Mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012. Mon. Wea. Rev., 143, 37003725, https://doi.org/10.1175/MWR-D-14-00126.1.

    • Search Google Scholar
    • Export Citation
  • Soler, T., and D. W. Eisemann, 1994: Determination of look angles to geostationary communication satellites. J. Surv. Eng., 120, 115127, https://doi.org/10.1061/(ASCE)0733-9453(1994)120:3(115).

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Effects of a persistent, midlatitude mesoscale region of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 35033527, https://doi.org/10.1175/1520-0469(1996)053<3503:EOPMMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and S. J. Weiss, 2002: Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 526543, https://doi.org/10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges of Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793813, https://doi.org/10.1175/MWR2887.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 23642388, https://doi.org/10.1175/2007MWR2205.1.

    • Search Google Scholar
    • Export Citation
  • Tangborn, A., B. Demoz, B. J. Carroll, J. Santanello, and J. L. Anderson, 2021: Assimilation of lidar planetary boundary layer height observations. Atmos. Meas. Tech., 14, 10991110, https://doi.org/10.5194/amt-14-1099-2021.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP global forecast system. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wu, W.-S., R. J. Pursuer, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., C.-J. Qiu, H.-D. Gu, and J.-X. Yu, 1995: Simple adjoint retrievals of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 123, 18221833, https://doi.org/10.1175/1520-0493(1995)123<1822:SAROMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Minamide, and E. E. Clothiaux, 2016: Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett., 43, 29542963, https://doi.org/10.1002/2016GL068468.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, and D. J. Stensrud, 2018: Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev., 146, 33633381, https://doi.org/10.1175/MWR-D-18-0062.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Stensrud, and F. Zhang, 2019: Simultaneous assimilation of radar and all-sky satellite infrared radiance observations for convection-allowing ensemble analysis and prediction of severe thunderstorms. Mon. Wea. Rev., 147, 43894409, https://doi.org/10.1175/MWR-D-19-0163.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., E. E. Clothiaux, and D. J. Stensrud, 2022: Correlation structures between satellite all-sky infrared brightness temperatures and the atmospheric state at storm scales. Adv. Atmos. Sci., 39, 714732, https://doi.org/10.1007/s00376-021-0352-3.

    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118, 11 55811 576, https://doi.org/10.1002/2013JD020405.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1744 1744 111
Full Text Views 334 334 20
PDF Downloads 381 381 27