• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2007.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Search Google Scholar
    • Export Citation
  • Asaadi, A., G. Brunet, and M. K. Yau, 2016: On the dynamics of the formation of the Kelvin cat’s-eye in tropical cyclogenesis. Part II: Numerical simulation. J. Atmos. Sci., 73, 23392359, https://doi.org/10.1175/JAS-D-15-0237.1.

    • Search Google Scholar
    • Export Citation
  • Asaadi, A., G. Brunet, and M. K. Yau, 2017: The importance of critical layer in differentiating developing from nondeveloping easterly waves. J. Atmos. Sci., 74, 409417, https://doi.org/10.1175/JAS-D-16-0085.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2019: Mesoscale processes during the genesis of Hurricane Karl (2010). J. Atmos. Sci., 76, 22352255, https://doi.org/10.1175/JAS-D-18-0161.1.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, K. J. Mallen, and P. D. Reasor, 2010: Simulation and interpretation of the genesis of Tropical Storm Gert (2005) as part of the NASA tropical cloud systems and processes experiment. J. Atmos. Sci., 67, 9991025, https://doi.org/10.1175/2009JAS3140.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, https://doi.org/10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413, https://doi.org/10.1175/1520-0493(1997)125<1397:LSIOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., A. S. Latto, and R. Berg, 2018: National Hurricane Center Tropical Cyclone Report: Hurricane Irma (AL112017) 30 August–12 September 2017. NHC Tech. Rep., 111 pp., https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

  • Chan, M.-Y., and X. Chen, 2022: Improving the analyses and forecasts of a tropical squall line using upper tropospheric infrared satellite observations. Adv. Atmos. Sci., 39, 733746, https://doi.org/10.1007/s00376-021-0449-8.

    • Search Google Scholar
    • Export Citation
  • Chan, M.-Y., F. Zhang, X. Chen, and L. R. Leung, 2020: Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Mon. Wea. Rev., 148, 32033224, https://doi.org/10.1175/MWR-D-19-0343.1.

    • Search Google Scholar
    • Export Citation
  • Chang, M., C.-H. Ho, M.-S. Park, J. Kim, and M.-H. Ahn, 2017: Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements. J. Geophys. Res. Atmos., 122, 16351649, https://doi.org/10.1002/2016JD025535.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019: Relative roles of preconditioning moistening and global circumnavigating mode on the MJO convective initiation during DYNAMO. Geophys. Res. Lett., 46, 10791087, https://doi.org/10.1029/2018GL080987.

    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, L. R. Leung, and F. Zhang, 2018a: Multiscale atmospheric overturning of the Indian summer monsoon as seen through isentropic analysis. J. Atmos. Sci., 75, 30113030, https://doi.org/10.1175/JAS-D-18-0068.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, and F. Zhang, 2018b: Atmospheric overturning across multiple scales of an MJO event during the CINDY/DYNAMO campaign. J. Atmos. Sci., 75, 381399, https://doi.org/10.1175/JAS-D-17-0060.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, F. Song, and Q. Yang, 2021a: Mesoscale convective systems dominate the energetics of the South Asian summer monsoon onset. Geophys. Res. Lett., 48, e2021GL094873, https://doi.org/10.1029/2021GL094873.

    • Search Google Scholar
    • Export Citation
  • Chen, X., R. G. Nystrom, C. A. Davis, and C. M. Zarzycki, 2021b: Dynamical structures of cross-domain forecast error covariance of a simulated tropical cyclone in a convection-permitting coupled atmosphere–ocean model. Mon. Wea. Rev., 149, 4163, https://doi.org/10.1175/MWR-D-20-0116.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, and F. Song, 2022a: Crucial role of mesoscale convective systems in the vertical mass, water, and energy transports of the South Asian summer monsoon. J. Climate, 35, 91108, https://doi.org/10.1175/JCLI-D-21-0124.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, and Q. Yang, 2022b: Precipitation-moisture coupling over tropical oceans: Sequential roles of shallow, deep, and mesoscale convective systems. Geophys. Res. Lett., 49, e2022GL097836, https://doi.org/10.1029/2022GL097836.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2021: IFS documentation CY47R3—Part I: Observations. ECMWF, 82 pp., https://doi.org/10.21957/ycow5yjr1.

  • Emanuel, K., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

  • Emanuel, K., and F. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 23152324, https://doi.org/10.1175/JAS-D-17-0008.1.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, https://doi.org/10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM): Version 1. NOAA Tech. Rep. NESDIS 122, 33 pp., https://repository.library.noaa.gov/view/noaa/1157.

  • Han, Y., F. Weng, Q. Liu, and P. van Delst, 2007: A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res., 112, D11121, https://doi.org/10.1029/2006JD008208.

    • Search Google Scholar
    • Export Citation
  • Hartman, C. M., X. Chen, E. E. Clothiaux, and M.-Y. Chan, 2021: Improving the analysis and forecast of Hurricane Dorian (2019) with simultaneous assimilation of GOES-16 all-sky infrared brightness temperatures and tail Doppler radar radial velocities. Mon. Wea. Rev., 149, 21932212, https://doi.org/10.1175/MWR-D-20-0338.1.

    • Search Google Scholar
    • Export Citation
  • He, J., and Coauthors, 2019: Development and evaluation of an ensemble-based data assimilation system for regional reanalysis over the Tibetan Plateau and surrounding regions. J. Adv. Model. Earth Syst., 11, 25032522, https://doi.org/10.1029/2019MS001665.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213229, https://doi.org/10.1175/MWR-D-16-0357.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, https://doi.org/10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and Coauthors, 2020: Assimilation of GOES-16 radiances and retrievals into the Warn-on-Forecast System. Mon. Wea. Rev., 148, 18291859, https://doi.org/10.1175/MWR-D-19-0379.1.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2013: Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment. Mon. Wea. Rev., 141, 192210, https://doi.org/10.1175/MWR-D-11-00239.1.

    • Search Google Scholar
    • Export Citation
  • Lei, L., J. S. Whitaker, J. L. Anderson, and Z. Tan, 2020: Adaptive localization for satellite radiance observations in an ensemble Kalman filter. J. Adv. Model. Earth Syst., 12, e2019MS001693, https://doi.org/10.1029/2019MS001693.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., D. J. Cecil, and W. A. Petersen, 2013a: Relation between tropical easterly waves, convection, and tropical cyclogenesis: A Lagrangian perspective. Mon. Wea. Rev., 141, 26492668, https://doi.org/10.1175/MWR-D-12-00217.1.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., W. A. Petersen, and D. J. Cecil, 2013b: Electrically active convection in tropical easterly waves and implications for tropical cyclogenesis in the Atlantic and east Pacific. Mon. Wea. Rev., 141, 542556, https://doi.org/10.1175/MWR-D-12-00174.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and Z. Pu, 2014: Numerical simulations of the genesis of Typhoon Nuri (2008): Sensitivity to initial conditions and implications for the roles of intense convection and moisture conditions. Wea. Forecasting, 29, 14021424, https://doi.org/10.1175/WAF-D-14-00003.1.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., and R. D. Torn, 2014: Probabilistic verification of global and mesoscale ensemble forecasts of tropical cyclogenesis. Wea. Forecasting, 29, 11811198, https://doi.org/10.1175/WAF-D-14-00028.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540, https://doi.org/10.1175/2007MWR2106.1.

    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 10631081, https://doi.org/10.1175/MWR-D-16-0257.1.

    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 32413258, https://doi.org/10.1175/MWR-D-17-0367.1.

    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2019: An adaptive background error inflation method for assimilating all-sky radiances. Quart. J. Roy. Meteor. Soc., 145, 805823, https://doi.org/10.1002/qj.3466.

    • Search Google Scholar
    • Export Citation
  • Minamide, M., F. Zhang, and E. E. Clothiaux, 2020: Nonlinear forecast error growth of rapidly intensifying Hurricane Harvey (2017) examined through convection-permitting ensemble assimilation of GOES-16 all-sky radiances. J. Atmos. Sci., 77, 42774296, https://doi.org/10.1175/JAS-D-19-0279.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 31763207, https://doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010a: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment–Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, https://doi.org/10.5194/acp-10-9879-2010.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2010b: Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827, https://doi.org/10.5194/acp-10-10803-2010.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Nunez Ocasio, K. M., 2021: Tropical cyclogenesis and its relation to interactions between African easterly waves and mesoscale convective systems. Ph.D. dissertation, The Pennsylvania State University, 123 pp., https://etda.libraries.psu.edu/catalog/21775kmn18.

  • Ou, T., D. Chen, X. Chen, C. Lin, K. Yang, H.-W. Lai, and F. Zhang, 2020: Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Climate Dyn., 54, 35253539, https://doi.org/10.1007/s00382-020-05181-x.

    • Search Google Scholar
    • Export Citation
  • Rajasree, V. P. M., A. P. Kesarkar, J. N. Bhate, V. Singh, U. Umakanth, and T. H. Varma, 2016a: A comparative study on the genesis of North Indian Ocean Tropical Cyclone Madi (2013) and Atlantic Ocean Tropical Cyclone Florence (2006). J. Geophys. Res. Atmos., 121, 13  82613 858, https://doi.org/10.1002/2016JD025412.

    • Search Google Scholar
    • Export Citation
  • Rajasree, V. P. M., A. P. Kesarkar, J. N. Bhate, U. Umakanth, V. Singh, and T. Harish Varma, 2016b: Appraisal of recent theories to understand cyclogenesis pathways of Tropical Cyclone Madi (2013). J. Geophys. Res. Atmos., 121, 89498982, https://doi.org/10.1002/2016JD025188.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171, https://doi.org/10.1175/JAS3540.1.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, J. D. White, and W. Hannah, 2017: Revisiting the connection between African easterly waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595, https://doi.org/10.1002/2016GL071236.

    • Search Google Scholar
    • Export Citation
  • Sawada, Y., K. Okamoto, M. Kunii, and T. Miyoshi, 2019: Assimilating every-10-minute Himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res. Atmos., 124, 25462561, https://doi.org/10.1029/2018JD029643.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and D. H. E. Dubin, 1999: Vortex motion driven by a background vorticity gradient. Phys. Rev. Lett., 83, 21912194, https://doi.org/10.1103/PhysRevLett.83.2191.

    • Search Google Scholar
    • Export Citation
  • Schmid, J., 2000: The SEVIRI instrument. Proc. 2000 EUMETSAT Meteorological Satellite Data User’s Conf., Bologna, Italy, EUMETSAT, 10 pp., https://www-cdn.eumetsat.int/files/2020-04/pdf_ten_msg_seviri_instrument.pdf.

  • Shin, S., and R. K. Smith, 2008: Tropical-cyclone intensification and predictability in a minimal three-dimensional model. Quart. J. Roy. Meteor. Soc., 134, 16611671, https://doi.org/10.1002/qj.327.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, https://doi.org/10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., J. W. Nielsen-Gammon, and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134, 17961814, https://doi.org/10.1175/MWR3165.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Tang, B. H., and Coauthors, 2020: Recent advances in research on tropical cyclogenesis. Trop. Cyclone Res. Rev., 9, 87105, https://doi.org/10.1016/j.tcrr.2020.04.004.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 1987: Inverse Problem Theory. Elsevier, 644 pp.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, and N. E. Davidson, 2006a: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63, 30773090, https://doi.org/10.1175/JAS3764.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, N. E. Davidson, and J. D. Kepert, 2006b: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation. J. Atmos. Sci., 63, 30913113, https://doi.org/10.1175/JAS3765.1.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, https://doi.org/10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Lei, Z.-M. Tan, and K. Chu, 2020: Adaptive localization for tropical cyclones with satellite radiances in an ensemble Kalman filter. Front. Earth Sci., 8, 39, https://doi.org/10.3389/feart.2020.00039.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, https://doi.org/10.1175/JCLI-D-14-00294.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, https://doi.org/10.1175/JAS-D-11-0298.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2018: What is the key feature of convection leading up to tropical cyclone formation? J. Atmos. Sci., 75, 16091629, https://doi.org/10.1175/JAS-D-17-0131.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010: Genesis of Pre–Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729, https://doi.org/10.1175/2009JAS3420.1.

    • Search Google Scholar
    • Export Citation
  • Weng, F., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 37993807, https://doi.org/10.1175/2007JAS2112.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ying, Y., and F. Zhang, 2017: Practical and intrinsic predictability of multiscale weather and convectively coupled equatorial waves during the active phase of an MJO. J. Atmos. Sci., 74, 37713785, https://doi.org/10.1175/JAS-D-17-0157.1.

    • Search Google Scholar
    • Export Citation
  • Ying, Y., and F. Zhang, 2018: Potentials in improving predictability of multiscale tropical weather systems evaluated through ensemble assimilation of simulated satellite-based observations. J. Atmos. Sci., 75, 16751698, https://doi.org/10.1175/JAS-D-17-0245.1.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and E. J. Zipser, 2014: A multisatellite investigation of the convective properties of developing and nondeveloping tropical disturbances. Mon. Wea. Rev., 142, 46244645, https://doi.org/10.1175/MWR-D-14-00028.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, https://doi.org/10.1175/BAMS-D-13-00231.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. Taraphdar, and S. Wang, 2017: The role of global circumnavigating mode in the MJO initiation and propagation. J. Geophys. Res. Atmos., 122, 58375856, https://doi.org/10.1002/2016JD025665.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Minamide, R. G. Nystrom, X. Chen, S.-J. Lin, and L. M. Harris, 2019: Improving Harvey forecasts with next-generation weather satellites: Advanced hurricane analysis and prediction with assimilation of GOES-R all-sky radiances. Bull. Amer. Meteor. Soc., 100, 12171222, https://doi.org/10.1175/BAMS-D-18-0149.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, and D. J. Stensrud, 2018: Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev., 146, 33633381, https://doi.org/10.1175/MWR-D-18-0062.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Stensrud, and F. Zhang, 2019: Simultaneous assimilation of radar and all-sky satellite infrared radiance observations for convection-allowing ensemble analysis and prediction of severe thunderstorms. Mon. Wea. Rev., 147, 43894409, https://doi.org/10.1175/MWR-D-19-0163.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Stensrud, and E. E. Clothiaux, 2021: Benefits of the Advanced Baseline Imager (ABI) for ensemble-based analysis and prediction of severe thunderstorms. Mon. Wea. Rev., 149, 313332, https://doi.org/10.1175/MWR-D-20-0254.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., E. E. Clothiaux, and D. J. Stensrud, 2022: Correlation structures between satellite all-sky infrared brightness temperatures and the atmospheric state at storm scales. Adv. Atmos. Sci., 39, 714732, https://doi.org/10.1007/s00376-021-0352-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 416 416 22
Full Text Views 257 257 8
PDF Downloads 274 274 9

Improving Tropical Cyclogenesis Forecasts of Hurricane Irma (2017) through the Assimilation of All-Sky Infrared Brightness Temperatures

Christopher M. HartmanaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Christopher M. Hartman in
Current site
Google Scholar
PubMed
Close
,
Xingchao ChenaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Xingchao Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9844-7836
, and
Man-Yau ChanaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Man-Yau Chan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The assimilation of satellite all-sky infrared (IR) brightness temperatures (BTs) has been shown in previous studies to improve intensity forecasts of tropical cyclones. In this study, we examine whether assimilating all-sky IR BTs can also potentially improve tropical cyclogenesis forecasts by improving the pregenesis cloud and moisture fields. By using an ensemble-based data assimilation system, we show that the assimilation of upper-tropospheric water vapor channel BTs observed by the Meteosat-10 SEVIRI instrument two days before the formation of a tropical depression improves the genesis forecast of Hurricane Irma (2017), a classic Cape Verde storm, by up to 24 h while also capturing its later rapid intensification in deterministic forecasts. In an experiment that withholds the assimilation of all-sky IR BTs, the assimilation of conventional observations from the Global Telecommunications System (GTS) leads to the premature genesis of Hurricane Irma by at least 24 h. This premature genesis is shown to result from an overestimation of the spatial coverage of deep convection within the African easterly wave (AEW) from which Irma eventually forms. The gross overestimation of deep convection without all-sky IR BTs is accompanied by higher column saturation fraction, stronger low-level convergence, and the earlier spinup of a low-level meso-β-scale vortex within the AEW that ultimately becomes Hurricane Irma. Through its adjustment to the initial moisture and cloud conditions, the assimilation of all-sky IR BTs leads to a more realistic convective evolution in forecasts and ultimately a more realistic timing of genesis.

Significance Statement

Every year hurricanes impact the lives of thousands of people living along the eastern coast of the United States. Many of these storms originate from tropical disturbances that exit the west coast of Africa. To give the public more warning time ahead of these storms, it is important to improve the forecasts of their formation. This study uses a system developed at The Pennsylvania State University to incorporate satellite observations into forecasts of a classic Cape Verde storm, Hurricane Irma (2017), two days before it formed. By using satellite-collected radiances, we improve the timing of its formation by up to 24 h due to a better representation of the mesoscale tropical disturbance from which it originated.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu

Abstract

The assimilation of satellite all-sky infrared (IR) brightness temperatures (BTs) has been shown in previous studies to improve intensity forecasts of tropical cyclones. In this study, we examine whether assimilating all-sky IR BTs can also potentially improve tropical cyclogenesis forecasts by improving the pregenesis cloud and moisture fields. By using an ensemble-based data assimilation system, we show that the assimilation of upper-tropospheric water vapor channel BTs observed by the Meteosat-10 SEVIRI instrument two days before the formation of a tropical depression improves the genesis forecast of Hurricane Irma (2017), a classic Cape Verde storm, by up to 24 h while also capturing its later rapid intensification in deterministic forecasts. In an experiment that withholds the assimilation of all-sky IR BTs, the assimilation of conventional observations from the Global Telecommunications System (GTS) leads to the premature genesis of Hurricane Irma by at least 24 h. This premature genesis is shown to result from an overestimation of the spatial coverage of deep convection within the African easterly wave (AEW) from which Irma eventually forms. The gross overestimation of deep convection without all-sky IR BTs is accompanied by higher column saturation fraction, stronger low-level convergence, and the earlier spinup of a low-level meso-β-scale vortex within the AEW that ultimately becomes Hurricane Irma. Through its adjustment to the initial moisture and cloud conditions, the assimilation of all-sky IR BTs leads to a more realistic convective evolution in forecasts and ultimately a more realistic timing of genesis.

Significance Statement

Every year hurricanes impact the lives of thousands of people living along the eastern coast of the United States. Many of these storms originate from tropical disturbances that exit the west coast of Africa. To give the public more warning time ahead of these storms, it is important to improve the forecasts of their formation. This study uses a system developed at The Pennsylvania State University to incorporate satellite observations into forecasts of a classic Cape Verde storm, Hurricane Irma (2017), two days before it formed. By using satellite-collected radiances, we improve the timing of its formation by up to 24 h due to a better representation of the mesoscale tropical disturbance from which it originated.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 193 MB)
Save