Demonstrating the Potential Impacts of Assimilating FY-4A Visible Radiances on Forecasts of Cloud and Precipitation with a Localized Particle Filter

Yongbo Zhou aSchool of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China
bPrecision Regional Earth Modeling and Information Center (PREMIC), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yongbo Zhou in
Current site
Google Scholar
PubMed
Close
,
Yubao Liu aSchool of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China
bPrecision Regional Earth Modeling and Information Center (PREMIC), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yubao Liu in
Current site
Google Scholar
PubMed
Close
, and
Wei Han cCMA Earth System Modeling and Prediction Centre (CEMC), Beijing, China
dState Key Laboratory of Severe Weather (LaSW), Beijing, China

Search for other papers by Wei Han in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Advanced Geostationary Radiation Imager (AGRI) on board the Fengyun-4A (FY-4A) satellite provides visible radiances that contain critical information on clouds and precipitation. In this study, the impact of assimilating FY-4A/AGRI all-sky visible radiances on the simulation of a convective system was evaluated with an observing system simulation experiment (OSSE) using a localized particle filter (PF). The localized PF was implemented into the Data Assimilation Research Testbed (DART) coupled with the Weather Research and Forecasting (WRF) Model. The results of a 2-day data assimilation (DA) experiment generated encouraging outcome at a synoptic scale. Assimilating FY-4A/AGRI visible radiances with the localized PF significantly improved the analysis and forecast of cloud water path (CWP), cloud coverage, rain rate, and rainfall areas. In addition, some positive impacts were produced on the temperature and water vapor mixing ratio in the vicinity of cloudy regions. Sensitivity studies indicated that the best results were achieved by the localized PF configured with a localization distance that is equivalent to the model grid spacing (20 km) and with an adequately short cycling interval (30 min). However, the localized PF could not improve cloud vertical structures and cloud phases due to a lack of related information in the visible radiances. Moreover, the localized PF was compared with the ensemble adjustment Kalman filter (EAKF) and it was indicated that the localized PF outperformed EAKF even when the number of ensemble members was doubled for the latter, indicating a great potential of the localized PF in assimilating visible radiances.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Yongbo Zhou, yongbo.zhou@nuist.edu.cn; Yubao Liu, ybliu@nuist.edu.cn

Abstract

The Advanced Geostationary Radiation Imager (AGRI) on board the Fengyun-4A (FY-4A) satellite provides visible radiances that contain critical information on clouds and precipitation. In this study, the impact of assimilating FY-4A/AGRI all-sky visible radiances on the simulation of a convective system was evaluated with an observing system simulation experiment (OSSE) using a localized particle filter (PF). The localized PF was implemented into the Data Assimilation Research Testbed (DART) coupled with the Weather Research and Forecasting (WRF) Model. The results of a 2-day data assimilation (DA) experiment generated encouraging outcome at a synoptic scale. Assimilating FY-4A/AGRI visible radiances with the localized PF significantly improved the analysis and forecast of cloud water path (CWP), cloud coverage, rain rate, and rainfall areas. In addition, some positive impacts were produced on the temperature and water vapor mixing ratio in the vicinity of cloudy regions. Sensitivity studies indicated that the best results were achieved by the localized PF configured with a localization distance that is equivalent to the model grid spacing (20 km) and with an adequately short cycling interval (30 min). However, the localized PF could not improve cloud vertical structures and cloud phases due to a lack of related information in the visible radiances. Moreover, the localized PF was compared with the ensemble adjustment Kalman filter (EAKF) and it was indicated that the localized PF outperformed EAKF even when the number of ensemble members was doubled for the latter, indicating a great potential of the localized PF in assimilating visible radiances.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Yongbo Zhou, yongbo.zhou@nuist.edu.cn; Yubao Liu, ybliu@nuist.edu.cn
Save
  • Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., R. Cotton, K. Furtado, S. Havemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen, 2014: A self-consistent scattering model for cirrus. II: The high and low frequencies. Quart. J. Roy. Meteor. Soc., 140, 10391057, https://doi.org/10.1002/qj.2193.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. J. Geer, P. Lopez, and D. Salmond, 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 18681885, https://doi.org/10.1002/qj.659.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., E. Hólm, L. Isaksen, and M. Fisher, 2016: The evolution of the ECMWF hybrid data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 287303, https://doi.org/10.1002/qj.2652.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., P. Lean, and E. Hólm, 2018: Nonlinear effects in 4D-Var. Nonlinear Processes Geophys., 25, 713729, https://doi.org/10.5194/npg-25-713-2018.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., A. J. Geer, and M. Hamrud, 2020: All-sky microwave radiances assimilated with an ensemble Kalman filter. Mon. Wea. Rev., 148, 27372760, https://doi.org/10.1175/MWR-D-19-0413.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, https://doi.org/10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Chai, T., and R. R. Draxler, 2014: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7, 12471250, https://doi.org/10.5194/gmd-7-1247-2014.

    • Search Google Scholar
    • Export Citation
  • Chai, T., and Coauthors, 2013: Evaluation of the United States national air quality forecast capability experimental real-time predictions in 2010 using air quality system ozone and NO2 measurements. Geosci. Model Dev., 6, 18311850, https://doi.org/10.5194/gmd-6-1831-2013.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Di, Z., W. Gong, Y. Gan, C. Shen, and Q. Duan, 2019: Combinatorial optimization for WRF physical parameterization schemes: A case study of three-day typhoon simulations over the Northwest Pacific Ocean. Atmosphere, 10, 233, https://doi.org/10.3390/atmos10050233.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, 3 pp., https://www2.mmm.ucar.edu/mm5/lsm/soil.pdf.

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., R. Yang, N. C. Privé, K.-S. Tai, R. Todling, M. E. Sienkiewicz, and J. Guo, 2013: Development and validation of observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office. Quart. J. Roy. Meteor. Soc., 139, 11621178, https://doi.org/10.1002/qj.2027.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: Sequential data assimilation. Data Assimilation: The Ensemble Kalman Filter, 2nd ed. G. Evensen, Ed., Springer, 307 pp., https://doi.org/10.1007/978-3-642-03711-5.

  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, https://doi.org/10.1002/2015GL065497.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 20242037, https://doi.org/10.1002/qj.830.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., P. Bauer, and C. W. O’Dell, 2009: A revised cloud overlap scheme for fast microwave radiative transfer in rain and cloud. J. Appl. Meteor. Climatol., 48, 22572270, https://doi.org/10.1175/2009JAMC2170.1.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2017: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 11911217, https://doi.org/10.1002/qj.3202.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc., 140F, 107113, https://doi.org/10.1049/ip-f-2.1993.0015.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North SeaWave Project (JONSWAP). Dtsch. Hydrogr. Z., 8, 195, http://resolver.tudelf.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018a: ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 30 July 2022, https://doi.org/10.24381/cds.bd0915c6.

  • Hersbach, H., and Coauthors, 2018b: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 30 July 2022, https://doi.org/10.24381/cds.adbb2d47.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, R. B., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kain, S. J., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, S. J., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanji, A. J., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Hohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

  • Korolev, A., and Coauthors, 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 5.1–5.50, https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.

  • Kubar, L. T., and D. L. Hartmann, 2008: Vertical structure of tropical oceanic convective clouds and its relation to precipitation. Geophys. Res. Lett., 35, L03804, https://doi.org/10.1029/2007GL032811.

    • Search Google Scholar
    • Export Citation
  • Kurzrock, F., and Coauthors, 2019: Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment. Geosci. Model Dev., 12, 39393954, https://doi.org/10.5194/gmd-12-3939-2019.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, J. Simpson, R. Cifelli, S. Rutledge, W. Olson, and J. Halverson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, https://doi.org/10.1175/JAS3879.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, J.-D. Chern, D. Wu, and X. Li, 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 35833612, https://doi.org/10.1175/JAS-D-13-0330.1.

    • Search Google Scholar
    • Export Citation
  • Lei, L., Z. Wang, and Z.-M. Tan, 2021: Integrated hybrid data assimilation for an ensemble Kalman filter. Mon. Wea. Rev., 149, 40914105, https://doi.org/10.1175/MWR-D-21-0002.1.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., A. Guillaume, and T. Yuan, 2019: Reconstruction of cloud vertical structure with a generative adversarial network. Geophys. Res. Lett., 46, 70357044, https://doi.org/10.1029/2019GL082532.

    • Search Google Scholar
    • Export Citation
  • Li, J., A. J. Geer, K. Okamoto, J. A. Otkin, Z. Liu, W. Han, and P. Wang, 2022: Satellite all-sky infrared radiance assimilation: Recent progress and future perspectives. Adv. Atmos. Sci., 39, 921, https://doi.org/10.1007/s00376-021-1088-9.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and B. Wang, 2010: Data assimilation cycle experiments in typhoon numerical prediction using the model-constrained 3DVar (in Chinese). Acta Meteor. Sin., 68, 153161, https://doi.org/10.11676/qxxb2010.016.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 33633373, https://doi.org/10.1175/2008MWR2312.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2011: Developments of variational data assimilation. ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 16 pp., https://www.ecmwf.int/sites/default/files/elibrary/2012/10825-developments-variational-data-assimilation.pdf.

  • Lorenc, A. C., E. N. Bowler, M. A. Clayton, R. S. Pring, and D. Fairbarin, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, https://doi.org/10.1175/MWR-D-14-00195.1.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., 2008: The generation of RTTOV regression coefficients for IASI and AIRS using a new profile training set and a new line-by-line database. ECMWF Tech. Memo. 564, 47 pp.

  • Mayer, B., and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys., 5, 18551877, https://doi.org/10.5194/acp-5-1855-2005.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, https://doi.org/10.1175/2009WAF2222260.1.

    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, https://doi.org/10.1002/2015GL064604.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2015: NCEP GFS 0.25 degree global forecast grids historical archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 20 August 2022, https://doi.org/10.5065/D65D8PWK.

  • Otkin, A. J., 2010: Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207, https://doi.org/10.1029/2009JD013759.

    • Search Google Scholar
    • Export Citation
  • Parrish, F. D., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Search Google Scholar
    • Export Citation
  • Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud-affected radiances in a cloud-resolving model. Mon. Wea. Rev., 139, 755773, https://doi.org/10.1175/2010MWR3360.1.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev., 144, 5976, https://doi.org/10.1175/MWR-D-15-0163.1.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., and J. L. Anderson, 2016: Efficient assimilation of simulated observations in a high-dimensional geophysical system using a localized particle filter. Mon. Wea. Rev., 144, 20072020, https://doi.org/10.1175/MWR-D-15-0322.1.

    • Search Google Scholar
    • Export Citation
  • Potthast, R., A. Walter, and A. Rhodin, 2019: A localized adaptive particle filter within an operational NWP framework. Mon. Wea. Rev., 147, 345362, https://doi.org/10.1175/MWR-D-18-0028.1.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., R. M. Errico, and K.-S. Tai, 2013: Validation of the forecast skill of the Global Modeling and Assimilation Office observing system simulation experiment. Quart. J. Roy. Meteor. Soc., 139, 13541363, https://doi.org/10.1002/qj.2029.

    • Search Google Scholar
    • Export Citation
  • Robert, S., D. Leuenberger, and H. R. Künsch, 2017: A local ensemble transform Kalman particle filter for convective-scale data assimilation. Quart. J. Roy. Meteor. Soc., 144, 12791296, https://doi.org/10.1002/qj.3116.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 27172737, https://doi.org/10.5194/gmd-11-2717-2018.

    • Search Google Scholar
    • Export Citation
  • Savage, N. H., P. Agnew, L. S. Davis, C. Ordóñez, R. Thorpe, C. E. Johnson, F. M. O’Connor, and M. Dalvi, 2013: Air quality modelling using the Met Office unified model (AQUM OS24-26): Model description and initial evaluation. Geosci. Model Dev., 6, 353372, https://doi.org/10.5194/gmd-6-353-2013.

    • Search Google Scholar
    • Export Citation
  • Scheck, L., P. Frèrebeau, R. Buras-Schnell, and B. Mayer, 2016: A fast radiative transfer method for the simulation of visible satellite imagery. J. Quant. Spectrosc. Radiat. Transfer, 175, 5467, https://doi.org/10.1016/j.jqsrt.2016.02.008.

    • Search Google Scholar
    • Export Citation
  • Scheck, L., M. Weissmann, and L. Bach, 2020: Assimilating visible satellite images for convective-scale numerical weather prediction: A case-study. Quart. J. Roy. Meteor. Soc., 146, 31653186, https://doi.org/10.1002/qj.3840.

    • Search Google Scholar
    • Export Citation
  • Schröttle, J., M. Weissmann, L. Scheck, and A. Hutt, 2020: Assimilating visible and infrared radiances in idealized simulations of deep convection. Mon. Wea. Rev., 148, 43574375, https://doi.org/10.1175/MWR-D-20-0002.1.

    • Search Google Scholar
    • Export Citation
  • Short, C. J., and J. Petch, 2022: Reducing the spin-up of a regional NWP system without data assimilation. Quart. J. Roy. Meteor. Soc., 148, 16231643, https://doi.org/10.1002/qj.4268.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 46294640, https://doi.org/10.1175/2008MWR2529.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, https://doi.org/10.1007/s00703-001-0594-7.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., H. R. Künsch, L. Nerger, R. Potthast, and S. Reich, 2019: Particle filters for high-dimensional geoscience applications: A review. Quart. J. Roy. Meteor. Soc., 145, 23352365, https://doi.org/10.1002/qj.3551.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2001: Statistical analysis of the uncertainties in cloud optical depth retrievals caused by three-dimensional radiative effects. J. Atmos. Sci., 58, 15401548, https://doi.org/10.1175/1520-0469(2001)058<1540:SAOTUI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vidot, J., and É. Borbás, 2014: Land surface VIS/NIR BRDF atlas for RTTOV-11: Model and validation against SEVIRI land SAF albedo product. Quart. J. Roy. Meteor. Soc., 140, 21862196, https://doi.org/10.1002/qj.2288.

    • Search Google Scholar
    • Export Citation
  • Vidot, J., P. Brunel, M. Dumont, C. Carmagnola, and J. Hocking, 2018: The VIS/NIR land and snow BRDF atlas for RTTOV: Comparison between MODIS MCD43C1 C5 and C6. Remote Sens., 10, 21, https://doi.org/10.3390/rs10010021.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. Vondar Harr, and A. S. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiance. Mon. Wea. Rev., 132, 30663077, https://doi.org/10.1175/MWR2837.1.

    • Search Google Scholar
    • Export Citation
  • Xu, D., Z. Liu, S. Fan, M. Chen, and D. Shen, 2021: Assimilating all-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China. Adv. Atmos. Sci., 38, 661676, https://doi.org/10.1007/s00376-020-0219-z.

    • Search Google Scholar
    • Export Citation
  • Yan, Y., and Y. Liu, 2019: Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan Plateau and its neighboring regions. Adv. Atmos. Sci., 36, 10891102, https://doi.org/10.1007/s00376-019-8229-4.

    • Search Google Scholar
    • Export Citation
  • Yang, C., Z. Liu, J. Bresch, R. H. S. Rizvi, X.-Y. Huang, and J. Min, 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus, 68A, 30917, https://doi.org/10.3402/tellusa.v68.30917.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Z. Zhang, C. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 16371658, https://doi.org/10.1175/BAMS-D-16-0065.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., and Coauthors, 2019: General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Front. Earth Sci., 6, 224, https://doi.org/10.3389/feart.2018.00224.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. Sun, and L. Yang, 2020: A numerical study of effects of radiation on deep convective warm based cumulus cloud development with a 3-D radiative transfer model. Atmosphere, 11, 1187, https://doi.org/10.3390/atmos11111187.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, and D. J. Stensrud, 2018: Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev., 146, 33633381, https://doi.org/10.1175/MWR-D-18-0062.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, G., W. Fu, J. Zhu, and H. Wang, 2004: The impact of location-dependent correlation scales in ocean data assimilation. Geophys. Res. Lett., 31, L21306, https://doi.org/10.1029/2004GL020579.

    • Search Google Scholar
    • Export Citation
  • Zhou, G., L. Dong, X. , and L. Liu, 2022: Analysis of the cause of rapid offshore strengthening of Typhoon Higos and Hato (in Chinese). Climate Environ. Res., 27, 285298.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., Y. Liu, and C. Liu, 2021: A machine learning-based method to account for 3D short-wave radiative effects in 1D satellite observation operators. J. Quant. Spectrosc. Radiat. Transfer, 275, 107891, https://doi.org/10.1016/j.jqsrt.2021.107891.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., Y. Liu, Z. Huo, and Y. Li, 2022: A preliminary evaluation of WRF (ARW v4.1.1)/DART (Manhattan release v9.8.0)-RTTOV (v12.3) in assimilating satellite visible radiance data for a cyclone case. Geosci. Model Dev., 15, 73977420, https://doi.org/10.5194/gmd-15-7397-2022.

    • Search Google Scholar
    • Export Citation
  • Zhu, S., and Coauthors, 2022: A four-dimensional ensemble-variational (4DEnVar) data assimilation system based on GRAPES-GFS: System description and primary tests. J. Adv. Model. Earth Syst., 14, e2021MS002737, https://doi.org/10.1029/2021MS002737.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., 2005: Ensemble forecast: A new approach to uncertainty and predictability. Adv. Atmos. Sci., 22, 781788, https://doi.org/10.1007/BF02918678.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2016: All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Wea. Rev., 144, 47094735, https://doi.org/10.1175/MWR-D-15-0445.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 424 424 31
Full Text Views 127 127 2
PDF Downloads 143 143 4