Evaluating the Impacts of COSMIC-2 GNSS RO Bending Angle Assimilation on Atlantic Hurricane Forecasts Using the HWRF Model

William J. Miller aCooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by William J. Miller in
Current site
Google Scholar
PubMed
Close
,
Yong Chen bNOAA/National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Yong Chen in
Current site
Google Scholar
PubMed
Close
,
Shu-Peng Ho bNOAA/National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Shu-Peng Ho in
Current site
Google Scholar
PubMed
Close
, and
Xi Shao aCooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Xi Shao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the impact of assimilating Global Navigation Satellite System (GNSS) radio occultation (RO) bending angles from Formosa Satellite Mission-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) receiver satellites on Hurricane Weather Research and Forecasting (HWRF) Model tropical cyclone (TC) forecasts. Launched in June 2019, the COSMIC-2 mission provides significantly higher tropics data coverage compared to its predecessor COSMIC constellation. GNSS RO measurements yield information about atmospheric pressure, temperature, and water vapor profiles. HWRF is cycled with and without COSMIC-2 bending angle data assimilation for six 2020 Atlantic hurricane cases. COSMIC-2 assimilation has little impact on HWRF track forecasts, consistent with HWRF’s design limiting cycled data assimilation impacts on surrounding large-scale flows; however, COSMIC-2 assimilation results in a statistically significant ∼8%–12% mean absolute forecast error reduction in minimum central sea level pressure for t = 36-, 54-, 60-, and 108–120-h lead times. Forecasts initialized from analyses assimilating COSMIC-2 observations also have a 1%–4% smaller 600–700-hPa specific humidity (SPFH) root-mean-squared deviation compared to radiosondes and dropwindsondes for most lead times. While not all HWRF intensity forecasts benefit from COSMIC-2 assimilation, a few show notable improvement. For example, assimilating two COSMIC-2 profiles within the inner core of developing Hurricane Hanna (2020) increases 800-hPa SPFH by up to 1 g kg−1 locally, helping to correct a dry bias. The forecast initialized from this analysis better captures Hanna’s observed intensification rate, likely because its moister inner core facilitates development of persistent deep convection near the TC center, where diabatic heating is more efficiently converted to cyclonic wind kinetic energy.

Significance Statement

Tropical cyclone (TC) intensification can be strongly sensitive to the lower-to-midtropospheric water vapor distribution near the storm. The COSMIC-2 GNSS radio occultation (RO) receiver satellite mission provides denser spatial coverage of atmospheric water vapor and temperature profiles over the tropics compared to other GNSS RO observation platforms. Herein, using six 2020 Atlantic TC cases, we evaluate the impacts of assimilating COSMIC-2 RO bending angles into a regional forecast model that already assimilates clear-sky satellite radiances. It is shown that COSMIC-2 assimilation yields a modest ∼10% intensity forecast skill improvement for several lead times, although more substantial intensity forecast improvement is found for a few forecasts where the COSMIC-2 observation assimilation helps correct a lower-to-midtropospheric water vapor bias.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. William J. Miller, wmiller1@umd.edu

Abstract

This study evaluates the impact of assimilating Global Navigation Satellite System (GNSS) radio occultation (RO) bending angles from Formosa Satellite Mission-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) receiver satellites on Hurricane Weather Research and Forecasting (HWRF) Model tropical cyclone (TC) forecasts. Launched in June 2019, the COSMIC-2 mission provides significantly higher tropics data coverage compared to its predecessor COSMIC constellation. GNSS RO measurements yield information about atmospheric pressure, temperature, and water vapor profiles. HWRF is cycled with and without COSMIC-2 bending angle data assimilation for six 2020 Atlantic hurricane cases. COSMIC-2 assimilation has little impact on HWRF track forecasts, consistent with HWRF’s design limiting cycled data assimilation impacts on surrounding large-scale flows; however, COSMIC-2 assimilation results in a statistically significant ∼8%–12% mean absolute forecast error reduction in minimum central sea level pressure for t = 36-, 54-, 60-, and 108–120-h lead times. Forecasts initialized from analyses assimilating COSMIC-2 observations also have a 1%–4% smaller 600–700-hPa specific humidity (SPFH) root-mean-squared deviation compared to radiosondes and dropwindsondes for most lead times. While not all HWRF intensity forecasts benefit from COSMIC-2 assimilation, a few show notable improvement. For example, assimilating two COSMIC-2 profiles within the inner core of developing Hurricane Hanna (2020) increases 800-hPa SPFH by up to 1 g kg−1 locally, helping to correct a dry bias. The forecast initialized from this analysis better captures Hanna’s observed intensification rate, likely because its moister inner core facilitates development of persistent deep convection near the TC center, where diabatic heating is more efficiently converted to cyclonic wind kinetic energy.

Significance Statement

Tropical cyclone (TC) intensification can be strongly sensitive to the lower-to-midtropospheric water vapor distribution near the storm. The COSMIC-2 GNSS radio occultation (RO) receiver satellite mission provides denser spatial coverage of atmospheric water vapor and temperature profiles over the tropics compared to other GNSS RO observation platforms. Herein, using six 2020 Atlantic TC cases, we evaluate the impacts of assimilating COSMIC-2 RO bending angles into a regional forecast model that already assimilates clear-sky satellite radiances. It is shown that COSMIC-2 assimilation yields a modest ∼10% intensity forecast skill improvement for several lead times, although more substantial intensity forecast improvement is found for a few forecasts where the COSMIC-2 observation assimilation helps correct a lower-to-midtropospheric water vapor bias.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. William J. Miller, wmiller1@umd.edu
Save
  • Berg, R., and B. J. Reinhart, 2021: Tropical cyclone report: Hurricane Sally (11–17 September 2020). NHC Tech. Rep. AL192020, 69 pp., https://www.nhc.noaa.gov/data/tcr/AL192020_Sally.pdf.

  • Biswas, M. K., L. Carson, K. Newman, D. Stark, E. Kalina, E. Grell, and J. Frimel, 2018a: Community HWRF users’ guide V4.0a. Developmental Testbed Center, 163 pp., https://dtcenter.org/sites/default/files/community-code/hwrf/docs/users_guide/HWRF-UG-2018.pdf.

  • Biswas, M. K., and Coauthors, 2018b: Hurricane Weather Research and Forecasting (HWRF) model: 2018 Scientific Documentation. Developmental Testbed Center, 112 pp., https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf.

  • Blake, E., R. Berg, and A. Hagen, 2021: Tropical cyclone report: Hurricane Zeta (24–29 October 2020). NHC Tech. Rep. AL282020, 56 pp., https://www.nhc.noaa.gov/data/tcr/AL282020_Zeta.pdf.

  • Bowler, N. E., 2020: Revised GNSS-RO observation uncertainties in the Met Office NWP system. Quart. J. Roy. Meteor. Soc., 146, 22742296, https://doi.org/10.1002/qj.3791.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, https://doi.org/10.1175/JAS-D-10-05007.1.

    • Search Google Scholar
    • Export Citation
  • Brown, D. P., R. Berg, and B. Reinhart, 2021: Tropical cyclone report: Hurricane Hanna (23–26 July 2020). NHC Tech. Rep. AL082020, 49 pp., https://www.nhc.noaa.gov/data/tcr/AL082020_Hanna.pdf.

  • Cangialosi, J. P., and R. Berg, 2021: Tropical cyclone report: Hurricane Delta (4–10 October 2020). NHC Tech. Rep. AL262020, 46 pp., https://www.nhc.noaa.gov/data/tcr/AL262020_Delta.pdf.

  • Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., F. M. F. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 13171336, https://doi.org/10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., Y.-H. Kuo, and C.-Y. Huang, 2020: The impact of GPS RO data on predicting tropical cyclogenesis using a nonlocal observation operator: An initial assessment. Mon. Wea. Rev., 148, 27012717, https://doi.org/10.1175/MWR-D-19-0286.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., T.-C. Nguyen, and C.-Y. Huang, 2021: Impact of radio occultation data on the prediction of Typhoon Haishen (2020) with WRFDA hybrid assimilation. Atmosphere, 12, 1397, https://doi.org/10.3390/atmos12111397.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M.-E. Hsieh, L.-F. Hsiao, Y.-H. Kuo, M.-J. Yang, C.-Y. Huang, and C.-S. Lee, 2015: Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008–2010. Atmos. Meas. Tech., 8, 25312542, https://doi.org/10.5194/amt-8-2531-2015.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., C.-C. Tsai, Y.-C. Wu, A.-H. Wang, C.-J. Wang, H.-H. Lin, D.-R. Chen, and Y.-C. Yu, 2021: Evaluation of operational monsoon moisture surveillance and severe weather prediction utilizing COSMIC-2/FORMOSAT-7 radio occultation observations. Remote Sens., 13, 2979, https://doi.org/10.3390/rs13152979.

    • Search Google Scholar
    • Export Citation
  • Chien, T.-Y., S.-Y. Chen, C.-Y. Huang, C.-P. Shih, C. S. Schwartz, Z. Liu, J. Bresch, and J.-Y. Lin, 2022: Impacts of radio occultation data on typhoon forecasts as explored by the global MPAS-GSI System. Atmosphere, 13, 1353, https://doi.org/10.3390/atmos13091353.

    • Search Google Scholar
    • Export Citation
  • Christophersen, H., A. Aksoy, J. Dunion, and S. Aberson, 2018: Composite impact of Global Hawk unmanned aircraft dropwindsondes on tropical cyclone analyses and forecasts. Mon. Wea. Rev., 146, 22972314, https://doi.org/10.1175/MWR-D-17-0304.1.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, https://doi.org/10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in using an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, https://doi.org/10.1175/2009WAF2222302.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2015: Implementation of quality control for radio occultation observations in the presence of large gradients of atmospheric refractivity. Atmos. Meas. Tech., 8, 12751285, https://doi.org/10.5194/amt-8-1275-2015.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, https://doi.org/10.1029/2012JD017782.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, C. Amerault, and J. Moskaitis, 2012: Adjoint sensitivity and predictability of tropical cyclogenesis. J. Atmos. Sci., 69, 35353557, https://doi.org/10.1175/JAS-D-12-0110.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91111, https://doi.org/10.1175/JAS-D-12-018.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, https://doi.org/10.1175/MWR-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., J. R. Eyre, M. Hamrud, and J.-N. Thépaut, 2007: Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators. Quart. J. Roy. Meteor. Soc., 133, 12131227, https://doi.org/10.1002/qj.63.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330, https://doi.org/10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2020a: The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Amer. Meteor. Soc., 101, E1107E1136, https://doi.org/10.1175/BAMS-D-18-0290.1.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2020b: Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in-situ and satellite data. Remote Sens., 12, 4099, https://doi.org/10.3390/rs12244099.

    • Search Google Scholar
    • Export Citation
  • Huang, C.-Y., Y.-H. Kuo, S.-H. Chen, and F. Vandenberghe, 2005: Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931953, https://doi.org/10.1175/WAF874.1.

    • Search Google Scholar
    • Export Citation
  • Huang, C.-Y., and Coauthors, 2010: Impact of GPS radio occultation data assimilation on regional weather predictions. GPS Solutions, 14, 3549, https://doi.org/10.1007/s10291-009-0144-1.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 24 pp., https://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.

  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen, and C.-J. Wang, 2009: Impact of GPS RO refractivity soundings on a simulation of Typhoon Bilis (2006) upon landfall. Terr. Atmos. Oceanic Sci., 20, 115131, https://doi.org/10.3319/TAO.2008.01.21.03(F3C).

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, https://doi.org/10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Latto, A., A. Hagen, and R. Berg, 2021: Tropical cyclone report: Hurricane Isaias (30 July–4 August 2020). NHC Tech. Rep. AL092020, 84 pp., https://www.nhc.noaa.gov/data/tcr/AL092020_Isaias.pdf.

  • Lien, G.-Y., and Coauthors, 2021: Assimilation impact of early FORMOSAT-7/COSMIC-2 GNSS radio occultation data with Taiwan’s CWB Global Forecast System. Mon. Wea. Rev., 149, 21712191, https://doi.org/10.1175/MWR-D-20-0267.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., J. Anderson, and Y.-H. Kuo, 2012: Improved analyses and forecasts of Hurricane Ernesto’s genesis using radio occultation data in an ensemble filter assimilation system. Mon. Wea. Rev., 140, 151166, https://doi.org/10.1175/MWR-D-11-00024.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Y.-H. Kuo, S. Sokolovskiy, X. Zou, Z. Zeng, L.-F. Hsiao, and B. Ruston, 2018: A quality control procedure based on bending angle measurement uncertainty for radio occultation data assimilation in the tropical lower troposphere. J. Atmos. Oceanic Technol., 35, 21172131, https://doi.org/10.1175/JTECH-D-17-0224.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2020: Vortex initialization in the NCEP operational hurricane models. Atmosphere, 11, 968, https://doi.org/10.3390/atmos11090968.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. S. Schwartz, C. Snyder, and S.-Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 40174034, https://doi.org/10.1175/MWR-D-12-00083.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., B. F. Jewett, M. S. Gilmore, S. W. Nesbitt, and T.-L. Hsieh, 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 35153534, https://doi.org/10.1175/JAS-D-12-016.1.

    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometeor initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 32413258, https://doi.org/10.1175/MWR-D-17-0367.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, https://doi.org/10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, https://doi.org/10.1175/MWR-D-12-00135.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Onderlinde, M. J., and D. S. Nolan, 2016: Tropical cyclone–relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869890, https://doi.org/10.1175/JAS-D-15-0261.1.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., R. Berg, D. P. Roberts, and P. P. Papin, 2021: Tropical cyclone report: Hurricane Laura (20–29 August 2020). NHC Tech. Rep. AL132020, 75 pp., https://www.nhc.noaa.gov/data/tcr/AL132020_Laura.pdf.

  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Ruston, B., and S. Healy, 2021: Forecast impact of FORMOSAT-7/COSMIC-2 GNSS radio occultation measurements. Atmos. Sci. Lett., 22, e1019, https://doi.org/10.1002/asl.1019.

    • Search Google Scholar
    • Export Citation
  • Schreiner, W. S., and Coauthors, 2020: COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459, https://doi.org/10.1175/2008JAS2597.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Search Google Scholar
    • Export Citation
  • Teng, H.-F., Y.-H. Kuo, and J. M. Done, 2021: Importance of midlevel moisture for tropical cyclone formation in easterly and monsoon environments over the western North Pacific. Mon. Wea. Rev., 149, 24492469, https://doi.org/10.1175/MWR-D-20-0313.1.

    • Search Google Scholar
    • Export Citation
  • Teng, H.-F., Y.-H. Kuo, and J. M. Done, 2023: Potential impacts of radio occultation data assimilation on forecast skill of tropical cyclone formation in the western North Pacific. Geophys. Res. Lett., 50, e2021GL096750, https://doi.org/10.1029/2021GL096750.

    • Search Google Scholar
    • Export Citation
  • Trahan, S., and L. Sparling, 2012: An analysis of NCEP tropical cyclone vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744756, https://doi.org/10.1175/WAF-D-11-00063.1.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, https://doi.org/10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., R. F. Rogers, and P. D. Reasor, 2018: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761780, https://doi.org/10.1175/MWR-D-17-0213.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, J.-P., W. S. Schreiner, J. J. Braun, W. Xia-Serafino, and C.-Y. Huang, 2022: COSMIC-2 mission summary at three years in orbit. Atmosphere, 13, 1409, https://doi.org/10.3390/atmos13091409.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wu, T.-C., M. Zupanski, L. D. Grasso, C. D. Kummerow, and S.-A. Boukabara, 2019: All-sky radiance assimilation of ATMS in HWRF: A demonstration study. Mon. Wea. Rev., 147, 85106, https://doi.org/10.1175/MWR-D-17-0337.1.

    • Search Google Scholar
    • Export Citation
  • Xie, F., S. Syndergaard, E. R. Kursinski, and B. M. Herman, 2006: An approach for retrieving marine boundary layer refractivity from GPS occultation data in the presence of super-refraction. J. Atmos. Oceanic Technol., 23, 16291644, https://doi.org/10.1175/JTECH1996.1.

    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, E. R. Kursinski, A. J. Mannucci, and S. Syndergaard, 2010: Super-refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys. Res. Lett., 37, L11805, https://doi.org/10.1029/2010GL043299.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, https://doi.org/10.1175/JAS-D-13-0314.1.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and Coauthors, 2022: Accomplishments of NOAA’s airborne hurricane field program and a broader future approach to forecast improvement. Bull. Amer. Meteor. Soc., 103, E311E338, https://doi.org/10.1175/BAMS-D-20-0174.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Y.-H. Kuo, and S. Sokolovskiy, 2023: Assimilation of radio occultation data using measurement-based observation error specification: Preliminary results. Mon. Wea. Rev., 151, 589601, https://doi.org/10.1175/MWR-D-22-0122.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 559 559 38
Full Text Views 243 243 6
PDF Downloads 280 280 9