Origin and Evolution of Synoptic-Scale Vortices Initiated at Low Level Downwind of the Hoggar Mountains

Jean-Philippe Duvel aLaboratoire de Météorologie Dynamique, CNRS, Paris, France

Search for other papers by Jean-Philippe Duvel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Numerous low-level vortices are initiated downwind of the Hoggar Mountains and progress toward the Atlantic coast on the northern path of African easterly waves (AEWs). These vortices occur mostly in July and August and more specifically when the northern position of the Saharan heat low (SHL) generates stronger and vertically expanded easterly winds over the Hoggar Mountains. At synoptic time scales, a composite analysis reveals that vortex initiation and westward motion are also statistically triggered by a reinforcement of these easterly winds by a wide and persistent high pressure anomaly developing around the Strait of Gibraltar and by a weak wave trough approaching from the east. The vortices are generated in the lee of the Hoggar, about 1000 km west of this approaching trough, and intensify rapidly. The evolution of the vortex perturbation is afterward comparable with the known evolution of the AEWs of the northern path and suggest a growth due to dry barotropic and baroclinic processes induced in particular by the strong cyclonic shear between the reinforced easterly winds and the monsoon flow. These results show that vortex genesis promoted by changes in orographic forcing due to the strengthening of easterly winds over the Hoggar Mountains is a source of intensification of the northern path of AEWs in July and August. These results also provide a possible mechanism to explain the role of the SHL and of particular midlatitude intraseasonal disturbances on the intensity of these waves.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J.-P. Duvel, jpduvel@lmd.ipsl.fr

Abstract

Numerous low-level vortices are initiated downwind of the Hoggar Mountains and progress toward the Atlantic coast on the northern path of African easterly waves (AEWs). These vortices occur mostly in July and August and more specifically when the northern position of the Saharan heat low (SHL) generates stronger and vertically expanded easterly winds over the Hoggar Mountains. At synoptic time scales, a composite analysis reveals that vortex initiation and westward motion are also statistically triggered by a reinforcement of these easterly winds by a wide and persistent high pressure anomaly developing around the Strait of Gibraltar and by a weak wave trough approaching from the east. The vortices are generated in the lee of the Hoggar, about 1000 km west of this approaching trough, and intensify rapidly. The evolution of the vortex perturbation is afterward comparable with the known evolution of the AEWs of the northern path and suggest a growth due to dry barotropic and baroclinic processes induced in particular by the strong cyclonic shear between the reinforced easterly winds and the monsoon flow. These results show that vortex genesis promoted by changes in orographic forcing due to the strengthening of easterly winds over the Hoggar Mountains is a source of intensification of the northern path of AEWs in July and August. These results also provide a possible mechanism to explain the role of the SHL and of particular midlatitude intraseasonal disturbances on the intensity of these waves.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J.-P. Duvel, jpduvel@lmd.ipsl.fr
Save
  • Abdou, K., D. J. Parker, B. Brooks, N. Kalthoff, and T. Lebel, 2010: The diurnal cycle of lower boundary-layer wind in the West African monsoon. Quart. J. Roy. Meteor. Soc., 136, 6676, https://doi.org/10.1002/qj.536.

    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., Jr., and E. D. Maloney, 2014: The intraseasonal variability of African easterly wave energetics. J. Climate, 27, 65596580, https://doi.org/10.1175/JCLI-D-14-00146.1.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, https://doi.org/10.1175/MWR2884.1.

    • Search Google Scholar
    • Export Citation
  • Bou Karam, D., C. Flamant, P. Tulet, M. C. Todd, J. Pelon, and E. Williams, 2009: Dry cyclogenesis and dust mobilization in the intertropical discontinuity of the West African Monsoon: A case study. J. Geophys. Res., 114, D05115, https://doi.org/10.1029/2008JD010952.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276, https://doi.org/10.1175/1520-0493(1969)097<0256:SHOTAD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., R. Roehrig, and J.-P. Lafore, 2010: Intraseasonal variability of the Saharan heat low and its link with midlatitudes. J. Climate, 23, 25442561, https://doi.org/10.1175/2010JCLI3093.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Y.-C. Liu, 2014: The relation between dry vortex merger and tropical cyclone genesis over the Atlantic Ocean. J. Geophys. Res. Atmos., 119, 11 64111 661, https://doi.org/10.1002/2014JD021749.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, and A. J. Clark, 2008: North Atlantic hurricanes contributed by African easterly waves north and south of the African easterly jet. J. Climate, 21, 67676776, https://doi.org/10.1175/2008JCLI2523.1.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., F. Guichard, O. Bock, B. Campistron, J.-P. Lafore, and J.-L. Redelsperger, 2010: Synoptic variability of the monsoon flux over West Africa prior to the onset. Quart. J. Roy. Meteor. Soc., 136, 159173, https://doi.org/10.1002/qj.473.

    • Search Google Scholar
    • Export Citation
  • Cuesta, J., C. Lavaysee, C. Flamant, M. Mimouni, and P. Knippertz, 2010: Northward bursts of the West African monsoon leading to rainfall over the Hoggar Massif, Algeria. Quart. J. Roy. Meteor. Soc., 136, 174189, https://doi.org/10.1002/qj.439.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, and P. de Félice, 2002: Energetics of easterly wave disturbances over West Africa and the tropical Atlantic: A climatology from 1979–95 NCEP/NCAR reanalyses. Climate Dyn., 18, 487500, https://doi.org/10.1007/s00382-001-0195-7.

    • Search Google Scholar
    • Export Citation
  • Drame, M., G. S. Jenkins, M. Camara, and M. Robjhon, 2011: Observations and simulation of a Saharan air layer event with a midtropospheric dust layer at Dakar, Senegal, 6–7 July 2010. J. Geophys. Res., 116, D21204, https://doi.org/10.1029/2011JD016368.

    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., 1990: Convection over tropical Africa and the Atlantic Ocean during Northern summer. Part II: Modulation by easterly waves. Mon. Wea. Rev., 118, 18551868, https://doi.org/10.1175/1520-0493(1990)118<1855:COTAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., 2015: Initiation and intensification of tropical depressions over the Southern Indian Ocean: Influence of the MJO. Mon. Wea. Rev., 143, 21702191, https://doi.org/10.1175/MWR-D-14-00318.1.

    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., 2021: On vortices initiated over West Africa and their impact on North Atlantic tropical cyclones. Mon. Wea. Rev., 149, 585601, https://doi.org/10.1175/MWR-D-20-0252.1.

    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., S. J. Camargo, and A. H. Sobel, 2017: Role of the convection scheme in modeling initiation and intensification of tropical depressions over the North Atlantic. Mon. Wea. Rev., 145, 14951509, https://doi.org/10.1175/MWR-D-16-0201.1.

    • Search Google Scholar
    • Export Citation
  • Fiedler, S., K. Schepanski, P. Knippertz, B. Heinold, and I. Tegen, 2014: How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa? Atmos. Chem. Phys., 14, 89839000, https://doi.org/10.5194/acp-14-8983-2014.

    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., T. R. Nathan, and S.-H. Chen, 2016: Effects of Saharan dust on the linear dynamics of African easterly waves. J. Atmos. Sci., 73, 891911, https://doi.org/10.1175/JAS-D-15-0143.1.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2004: African easterly waves and their association with precipitation. J. Geophys. Res., 109, D04101, https://doi.org/10.1029/2003JD003967.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, https://doi.org/10.1175/JAS3742.1.

    • Search Google Scholar
    • Export Citation
  • Hamilton, H. L., K. M. Núñez Ocasio, J. L. Evans, G. S. Young, and J. D. Fuentes, 2020: Topographic influence on the African easterly jet and African easterly wave energetics. J. Geophys. Res. Atmos., 125, e2019JD032138, https://doi.org/10.1029/2019JD032138.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., D. W. Chappell, G. J. Robinson, and G. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17, 12961312, https://doi.org/10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, K. Hodges, and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483, https://doi.org/10.1175/JCLI4139.1.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, https://doi.org/10.1175/2009MWR2760.1.

    • Search Google Scholar
    • Export Citation
  • Huppert, H. E., and K. Bryan, 1976: Topographically generated eddies. Deep-Sea Res. Oceanogr. Abstr., 23, 655679, https://doi.org/10.1016/S0011-7471(76)80013-7.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., N. M. Hall, and G. N. Kiladis, 2011: Intermittent African easterly wave activity in a dry atmospheric model: Influence of the extratropics. J. Climate, 24, 53785396, https://doi.org/10.1175/JCLI-D-11-00049.1.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2018: The interaction between deep convection and easterly wave activity over Africa: Convective transitions and mechanisms. Mon. Wea. Rev., 146, 19451961, https://doi.org/10.1175/MWR-D-17-0217.1.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, https://doi.org/10.1175/JCLI3920.1.

    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., and J. A. Zehnder, 1996a: Lee vorticity production by large-scale tropical mountain ranges. Part I: Eastern North Pacific tropical cyclogenesis. J. Atmos. Sci., 53, 521538, https://doi.org/10.1175/1520-0469(1996)053<0521:LVPBLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., and J. A. Zehnder, 1996b: Lee vorticity production by large-scale tropical mountain ranges. Part II: A mechanism for the production of African waves. J. Atmos. Sci., 53, 539549, https://doi.org/10.1175/1520-0469(1996)053<0539:LVPBLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., D. F. P. Grogan, and S.-H. Chen, 2017: Subcritical destabilization of African easterly waves by Saharan mineral dust. J. Atmos. Sci., 74, 10391055, https://doi.org/10.1175/JAS-D-16-0247.1.

    • Search Google Scholar
    • Export Citation
  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342, https://doi.org/10.1175/1520-0493(1977)105<0334:TEOAWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Núñez Ocasio, K. M., J. L. Evans, and G. S. Young, 2020: A wave-relative framework analysis of AEW–MCS interactions leading to tropical cyclogenesis. Mon. Wea. Rev., 148, 46574671, https://doi.org/10.1175/MWR-D-20-0152.1.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and Coauthors, 2005: The diurnal cycle of the West African monsoon circulation. Quart. J. Roy. Meteor. Soc., 131, 28392860, https://doi.org/10.1256/qj.04.52.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. D. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, https://doi.org/10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., E. Klinker, and A. Hollingsworth, 1988: The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system. Meteor. Atmos. Phys., 38, 2233, https://doi.org/10.1007/BF01029944.

    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, J. D. White, and W. Hannah, 2017: Revisiting the connection between African easterly waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595, https://doi.org/10.1002/2016GL071236.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2014: Energetics of east Pacific easterly waves during intraseasonal events. J. Climate, 27, 76037621, https://doi.org/10.1175/JCLI-D-14-00211.1.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F. H. M., and L. Sun, 1997: The role of orography in determining the Sahelian climate. Int. J. Climatol., 17, 581596, https://doi.org/10.1002/(SICI)1097-0088(199705)17:6<581::AID-JOC134>3.0.CO;2-E.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16, 34073427, https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and D. P. Rowell, 1998: Interannual variability of African wave activity in a general circulation model. Int. J. Climatol., 18, 13051323, https://doi.org/10.1002/(SICI)1097-0088(1998100)18:12<1305::AID-JOC281>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001014<1166:AEWVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, https://doi.org/10.1175/2008JAS2575.1.

    • Search Google Scholar
    • Export Citation
  • White, J. D., A. Aiyyer, and J. O. Russell, 2021: The impact of orography on the African easterly wave stormtrack. J. Geophys. Res. Atmos., 126, e2020JD033749, https://doi.org/10.1029/2020JD033749.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 1991: The interaction of planetary-scale tropical easterly waves with topography: A mechanism for the initiation of tropical cyclones. J. Atmos. Sci., 48, 12171230, https://doi.org/10.1175/1520-0469(1991)048<1217:TIOPST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 337 289 8
Full Text Views 169 149 0
PDF Downloads 191 162 0