Improvements of Lagrangian Data Assimilation Tested in the Gulf of Mexico

Junjie Dong aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Junjie Dong in
Current site
Google Scholar
PubMed
Close
,
Luyu Sun aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Luyu Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5517-6773
,
James A. Carton aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by James A. Carton in
Current site
Google Scholar
PubMed
Close
, and
Stephen G. Penny bSofar Ocean, San Francisco, California
cCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Stephen G. Penny in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study extends initial work by Sun and Penny and Sun et al. to explore the inclusion of path information from surface drifters using an augmented-state Lagrangian data assimilation based on the local ensemble transform Kalman filter (LETKF-LaDA) with vertical localization to improve analysis of the ocean. The region of interest is the Gulf of Mexico during the passage of Hurricane Isaac in the summer of 2012. Results from experiments with a regional ocean model at eddy-permitting and eddy-resolving model resolutions are used to quantify improvements to the analysis of sea surface velocity, sea surface temperature, and sea surface height in a data assimilation system. The data assimilation system assimilates surface drifter positions, as well as vertical profiles of temperature and salinity. Data were used from drifters deployed as a part of the Grand Lagrangian Deployment beginning 20 July 2012. Comparison of experiment results shows that at both eddy-permitting and eddy-resolving horizontal resolutions Lagrangian assimilation of drifter positions significantly improves analysis of the ocean state responding to hurricane conditions. These results, which should be applicable to other tropical oceans such as the Bay of Bengal, open new avenues for estimating ocean initial conditions to improve tropical cyclone forecasting.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luyu Sun, lysun@umd.edu

Abstract

This study extends initial work by Sun and Penny and Sun et al. to explore the inclusion of path information from surface drifters using an augmented-state Lagrangian data assimilation based on the local ensemble transform Kalman filter (LETKF-LaDA) with vertical localization to improve analysis of the ocean. The region of interest is the Gulf of Mexico during the passage of Hurricane Isaac in the summer of 2012. Results from experiments with a regional ocean model at eddy-permitting and eddy-resolving model resolutions are used to quantify improvements to the analysis of sea surface velocity, sea surface temperature, and sea surface height in a data assimilation system. The data assimilation system assimilates surface drifter positions, as well as vertical profiles of temperature and salinity. Data were used from drifters deployed as a part of the Grand Lagrangian Deployment beginning 20 July 2012. Comparison of experiment results shows that at both eddy-permitting and eddy-resolving horizontal resolutions Lagrangian assimilation of drifter positions significantly improves analysis of the ocean state responding to hurricane conditions. These results, which should be applicable to other tropical oceans such as the Bay of Bengal, open new avenues for estimating ocean initial conditions to improve tropical cyclone forecasting.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luyu Sun, lysun@umd.edu
Save
  • Berta, M., A. Griffa, M. G. Magaldi, and T. M. Özgökmen, 2015: Improved surface velocity and trajectory estimates in the Gulf of Mexico from blended satellite altimetry and drifter data. J. Atmos. Oceanic Technol., 32, 18801901, https://doi.org/10.1175/JTECH-D-14-00226.1.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., O. K. Baranova, C. Coleman, and H. E. Garcia, 2018: Temperature. Vol. 4, World Ocean Database 2018, NOAA Atlas NESDIS 87, 52 pp.

  • Cardona, Y., and A. Bracco, 2016: Predictability of mesoscale circulation throughout the water column in the Gulf of Mexico. Deep-Sea Res. II, 129, 332349, https://doi.org/10.1016/j.dsr2.2014.01.008.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, and K. El Naggar, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., S. M. Uppala, A. J. Simmons, and P. Berrisford, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., and R. Lumpkin, 2008: Spectral description of oceanic near-surface variability. Geophys. Res. Lett., 35, L05606, https://doi.org/10.1029/2007GL032874.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Ide, K., L. Kuznetsov, and C. K. Jone, 2002: Lagrangian data assimilation for point vortex systems. J. Turbul., 3, 053, https://doi.org/10.1088/1468-5248/3/1/053.

    • Search Google Scholar
    • Export Citation
  • Ishikawa, Y., T. Awaji, K. Akitomo, and B. Qiu, 1996: Successive correction of the mean sea surface height by the simultaneous assimilation of drifting buoy and altimetric data. J. Phys. Oceanogr., 26, 23812397, https://doi.org/10.1175/1520-0485(1996)026<2381:SCOTMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Issa, L., J. Brajard, M. Fakhri, D. Hayes, L. Mortier, and P.-M. Poulain, 2016: Modelling surface currents in the eastern Levantine Mediterranean using surface drifters and satellite altimetry. Ocean Modell., 104, 114, https://doi.org/10.1016/j.ocemod.2016.05.006.

    • Search Google Scholar
    • Export Citation
  • Jean-Michel, L., G. Eric, B.-B. Romain, and G. Gilles, 2021: The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., B. Barnier, N. Ferry, J. Vialard, C. E. Menkes, M. Lengaigne, and L. Parent, 2014: Tropical cyclones in two atmospheric (re)analyses and their response in two oceanic reanalyses. Ocean Modell., 73, 108122, https://doi.org/10.1016/j.ocemod.2013.10.007.

    • Search Google Scholar
    • Export Citation
  • Kuznetsov, L., K. Ide, and C. K. Jones, 2003: A method for assimilation of Lagrangian data. Mon. Wea. Rev., 131, 22472260, https://doi.org/10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., O. Le Galloudec, M. Drévillon, and C. Régnier, 2013: Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci., 9, 5781, https://doi.org/10.5194/os-9-57-2013.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2021: The Copernicus global 1/12° oceanic and sea ice reanalysis. EGU General Assembly 2021, online, Copernicus Meetings, EGU21-14961, https://doi.org/10.5194/egusphere-egu21-14961.

  • Lumpkin, R., T. Özgökmen, and L. Centurioni, 2017: Advances in the application of surface drifters. Annu. Rev. Mar. Sci., 9, 5981, https://doi.org/10.1146/annurev-marine-010816-060641

    • Search Google Scholar
    • Export Citation
  • Madec, G., and the NEMO Team, 2008: NEMO ocean engine. Note du Pôle de Modélisation de l’Institut Pierre-Simon Laplace 27, 300 pp.

  • Molcard, A., L. I. Piterbarg, A. Griffa, T. M. Özgökmen, and A. J. Mariano, 2003: Assimilation of drifter observations for the reconstruction of the Eulerian circulation field. J. Geophys. Res., 108, 3056, https://doi.org/10.1029/2001JC001240.

    • Search Google Scholar
    • Export Citation
  • Muscarella, P., M. J. Carrier, H. Ngodock, S. Smith, B. L. Lipphardt, A. D. Kirwan, and H. S. Huntley, 2015: Do assimilated drifter velocities improve Lagrangian predictability in an operational ocean model? Mon. Wea. Rev., 143, 18221832, https://doi.org/10.1175/MWR-D-14-00164.1.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J. A., S. Dobricic, N. Pinardi, P.-M. Poulain, and D. Pettenuzzo, 2012: Variational assimilation of Lagrangian trajectories in the Mediterranean Ocean Forecasting System. Ocean Sci., 8, 249259, https://doi.org/10.5194/os-8-249-2012.

    • Search Google Scholar
    • Export Citation
  • NOAA–GFDL, 2021: Welcome to MOM6’s documentation. Accessed 12 May 2021, https://mom6.readthedocs.io/en/dev-gfdl/.

  • Nodet, M., 2006: Variational assimilation of Lagrangian data in oceanography. Inverse Probl., 22, 245263, https://doi.org/10.1088/0266-5611/22/1/014.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T., 2012: GLAD experiment CODE-style drifter trajectories (low-pass filtered, 15 minute interval records), northern Gulf of Mexico near DeSoto Canyon, July–October 2012. Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University–Corpus Christi, accessed 7 April 2022, https://doi.org/10.7266/N7VD6WC8.

  • Penny, S. G., D. W. Behringer, J. A. Carton, and E. Kalnay, 2015: A hybrid global ocean data assimilation system at NCEP. Mon. Wea. Rev., 143, 46604677, https://doi.org/10.1175/MWR-D-14-00376.1.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., G. P. Compo, J. S. Whitaker, and P. D. Sardeshmukh, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752759, https://doi.org/10.1002/2015GL067238.

    • Search Google Scholar
    • Export Citation
  • Sun, L., and S. G. Penny, 2019: Lagrangian data assimilation of surface drifters in a double-gyre ocean model using the local ensemble transform Kalman filter. Mon. Wea. Rev., 147, 45334551, https://doi.org/10.1175/MWR-D-18-0406.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., S. G. Penny, and M. Harrison, 2022: Impacts of the Lagrangian data assimilation of surface drifters on estimating ocean circulation during the Gulf of Mexico grand Lagrangian deployment. Mon. Wea. Rev., 150, 949965, https://doi.org/10.1175/MWR-D-21-0123.1.

    • Search Google Scholar
    • Export Citation
  • Taillandier, V., and A. Griffa, 2006: Implementation of position assimilation for ARGO floats in a realistic Mediterranean Sea OPA model and twin experiment testing. Ocean Sci., 2, 223236, https://doi.org/10.5194/os-2-223-2006

    • Search Google Scholar
    • Export Citation
  • Trent, K. R., 2006: Effect of the Gulf of Mexico’s mixed layer depth on hurricane intensity in the warming environment. SOARS Protégé Research Papers Summer 2006, University Corporation for Atmospheric Research, 26 pp., https://doi.org/10.5065/zf2q-1956.

  • Vernieres, G., C. K. R. T. Jones, and K. Ide, 2011: Capturing eddy shedding in the Gulf of Mexico from Lagrangian observations. Physica D, 240, 166179, https://doi.org/10.1016/j.physd.2010.06.008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 377 377 12
Full Text Views 169 169 4
PDF Downloads 176 176 4