Improving the Representation of Hail in the Thompson Microphysics Scheme

Anders A. Jensen aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anders A. Jensen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4107-2839
,
Gregory Thompson aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gregory Thompson in
Current site
Google Scholar
PubMed
Close
,
Kyoko Ikeda aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kyoko Ikeda in
Current site
Google Scholar
PubMed
Close
, and
Sarah A. Tessendorf aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Methods to improve the representation of hail in the Thompson–Eidhammer microphysics scheme are explored. A new two-moment and predicted density graupel category is implemented into the Thompson–Eidhammer scheme. Additionally, the one-moment graupel category’s intercept parameter is modified, based on hail observations, to shift the properties of the graupel category to become more hail-like since the category is designed to represent both graupel and hail. Finally, methods to diagnose maximum expected hail size at the surface and aloft are implemented. The original Thompson–Eidhammer version, the newly implemented two-moment and predicted density graupel version, and the modified (to be more hail-like) one-moment version are evaluated using a case that occurred during the Plains Elevated Convection at Night (PECAN) field campaign, during which hail-producing storms merged into a strong mesoscale convective system. The three versions of the scheme are evaluated for their ability to predict hail sizes compared to observed hail sizes from storm reports and estimated from radar, their ability to predict radar reflectivity signatures at various altitudes, and their ability to predict cold-pool features like temperature and wind speed. One key benefit of using the two-moment and predicted density graupel category is that the simulated reflectivity values in the upper levels of discrete storms are clearly improved. This improvement coincides with a significant reduction in the areal extent of graupel aloft, also seen when using the updated one-moment scheme. The two-moment and predicted density graupel scheme is also better able to predict a wide variety of hail sizes at the surface, including large (>2-in. diameter) hail that was observed during this case.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the PECAN:Plains Elevated Convection At Night Special Collection.

Corresponding author: Anders A. Jensen, anders.a.jensen@gmail.com

Abstract

Methods to improve the representation of hail in the Thompson–Eidhammer microphysics scheme are explored. A new two-moment and predicted density graupel category is implemented into the Thompson–Eidhammer scheme. Additionally, the one-moment graupel category’s intercept parameter is modified, based on hail observations, to shift the properties of the graupel category to become more hail-like since the category is designed to represent both graupel and hail. Finally, methods to diagnose maximum expected hail size at the surface and aloft are implemented. The original Thompson–Eidhammer version, the newly implemented two-moment and predicted density graupel version, and the modified (to be more hail-like) one-moment version are evaluated using a case that occurred during the Plains Elevated Convection at Night (PECAN) field campaign, during which hail-producing storms merged into a strong mesoscale convective system. The three versions of the scheme are evaluated for their ability to predict hail sizes compared to observed hail sizes from storm reports and estimated from radar, their ability to predict radar reflectivity signatures at various altitudes, and their ability to predict cold-pool features like temperature and wind speed. One key benefit of using the two-moment and predicted density graupel category is that the simulated reflectivity values in the upper levels of discrete storms are clearly improved. This improvement coincides with a significant reduction in the areal extent of graupel aloft, also seen when using the updated one-moment scheme. The two-moment and predicted density graupel scheme is also better able to predict a wide variety of hail sizes at the surface, including large (>2-in. diameter) hail that was observed during this case.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the PECAN:Plains Elevated Convection At Night Special Collection.

Corresponding author: Anders A. Jensen, anders.a.jensen@gmail.com
Save
  • Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013: Impact of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 12411262, https://doi.org/10.1175/MWR-D-12-00064.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek, I. L. Jirak, and C. L. Ziegler, 2019: Evolution of WRF-HAILCAST during the 2014–16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiments. Wea. Forecasting, 34, 6179, https://doi.org/10.1175/WAF-D-18-0024.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, https://doi.org/10.1002/qj.49707934207.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, https://doi.org/10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1971: Hailfall characteristics related to crop damage. J. Appl. Meteor. Climatol., 10, 270274, https://doi.org/10.1175/1520-0450(1971)010<0270:HCRTCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2008: Temporal and spatial distributions of damaging hail in the continental United States. Phys. Geogr., 29, 341350, https://doi.org/10.2747/0272-3646.29.4.341.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, https://doi.org/10.1175/WAF-D-13-00098.1.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and R. List, 1993: Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50, 15911609, https://doi.org/10.1175/1520-0469(1993)050<1591:MOTHAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, A. G. Detwiler, and J. M. Wilkinson, 2019: Normalized hail particle size distributions from the T-28 storm-penetrating aircraft. J. Appl. Meteor. Climatol., 58, 231245, https://doi.org/10.1175/JAMC-D-18-0118.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night Field Project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, https://doi.org/10.1175/MWR2810.1.

    • Search Google Scholar
    • Export Citation
  • Han, B., and Coauthors, 2019: Cloud-resolving model intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. J. Geophys. Res. Atmos., 124, 10901117, https://doi.org/10.1029/2018JD029596.

    • Search Google Scholar
    • Export Citation
  • Herman, G. R., E. R. Nielsen, and R. S. Schumacher, 2018: Probabilistic verification of Storm Prediction Center convective outlooks. Wea. Forecasting, 33, 161184, https://doi.org/10.1175/WAF-D-17-0104.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: The characteristics of graupel particles in northeastern Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 284295, https://doi.org/10.1175/1520-0469(1978)035%3C0284:TCOGPI%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and R. Wright, 2014: Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? J. Atmos. Sci., 71, 33923403, https://doi.org/10.1175/JAS-D-14-0034.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, J. Pinto, and C. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh model. Wea. Forecasting, 28, 921939, https://doi.org/10.1175/WAF-D-12-00085.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single-particle growth model. J. Atmos. Sci., 72, 25692590, https://doi.org/10.1175/JAS-D-14-0297.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018: Microphysical characteristics of squall-line stratiform precipitation and transition zones simulated using an ice particle property-evolving model. Mon. Wea. Rev., 146, 723743, https://doi.org/10.1175/MWR-D-17-0215.1.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landolt, S. D., J. S. Lave, D. Jacobson, A. Gaydos, S. DiVito, and D. Porter, 2019: The impacts of automation on present weather–type observing capabilities across the conterminous United States. J. Appl. Meteor. Climatol., 58, 26992715, https://doi.org/10.1175/JAMC-D-19-0170.1.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., and W. R. Cotton, 2014: A triple-moment hail bulk microphysics scheme. Part II: Verification and comparison with two-moment bulk microphysics. Atmos. Res., 150, 97128, https://doi.org/10.1016/j.atmosres.2014.07.016.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, https://doi.org/10.1175/JAS-D-12-0264.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, T., R. Herzog, S. J. Morrison, and S. R. Smith, 2002: Hail damage threshold sizes for common roofing materials. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., P3.2, https://ams.confex.com/ams/pdfpapers/45858.pdf.

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2013: Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429, https://doi.org/10.1175/JAS-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975995, https://doi.org/10.1175/JAS-D-15-0204.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704, https://doi.org/10.1175/JAS3564.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, https://doi.org/10.1175/2010MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., A. A. Jensen, J. Y. Harrington, and J. A. Milbrandt, 2016: Advection of coupled hydrometeor quantities in bulk cloud microphysics schemes. Mon. Wea. Rev., 144, 28092829, https://doi.org/10.1175/MWR-D-15-0368.1.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS/ROC, 1991: NOAA Next Generation Radar (NEXRAD) Level 2 base data. NOAA/National Centers for Environmental Information, accessed 5 August 2017, https://doi.org/10.7289/V5W9574V.

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Thompson, G., 2013: High-resolution winter simulations of winter precipitation over the Colorado Rockies. Workshop on Parametrization of Clouds and Precipitation, Shinfield Park, Reading, ECMWF, 35–46, https://www.ecmwf.int/node/12672.

  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., M. K. Politovich, and R. M. Rasmussen, 2017: A numerical weather model’s ability to predict characteristics of aircraft icing environments. Wea. Forecasting, 32, 207221, https://doi.org/10.1175/WAF-D-16-0125.1.

    • Search Google Scholar
    • Export Citation
  • Viterbo, F., and Coauthors, 2020: A multiscale, hydrometeorological forecast evaluation of national water model forecasts of the May 2018 Ellicott City, Maryland, flood. J. Hydrometeor., 21, 475499, https://doi.org/10.1175/JHM-D-19-0125.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1516 1516 45
Full Text Views 357 357 20
PDF Downloads 354 354 23