The Influence of Convection Initiation Strength on Subsequent Simulated Supercell Evolution

Matthew D. Flournoy aCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Matthew D. Flournoy in
Current site
Google Scholar
PubMed
Close
and
Erik N. Rasmussen bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Erik N. Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent studies have shown how very small differences in the background environment of a supercell can yield different outcomes, particularly in terms of tornado production. In this study, we use a novel convection initiation technique to simulate six supercells with a focus on their early development. Each experiment is identical, except for the strength of thermal forcing for the initial convection initiation. Each experiment yields a mature supercell, but differences in storm-scale characteristics like updraft speed, cold pool temperature deficit, and vertical vorticity development abound. Of these, the time when the midlevel updraft strengthens is most strongly related to initiation strength, with stronger thermal forcing favoring quicker updraft development. The same is true for the low-level updraft, with the additional relationship that stronger thermal forcing also tends to yield stronger low-level updrafts for around the first 2 h of the simulations. The experiments with faster updraft development tend to be associated with more rapid surface vortex intensification; however, cold pool evolution differs between simulations with weaker versus stronger thermal forcing. Stronger thermal forcing also yields deviant rightward storm motion earlier in the supercell’s life cycle that remains more consistent for the duration of the simulation. These results highlight the range of supercellular outcomes that are possible across a background environment due to differences in storm-scale initiation strength. They are also of potential importance for predicting the paths and tornado potential of supercells in real time.

Significance Statement

Despite a better understanding of processes related to tornado production in supercell thunderstorms, forecasters still have difficulty discriminating between tornadic and nontornadic supercells in close proximity to each other within the same severe weather event. In this study, we use six simulations of supercells to examine how these different outcomes can occur. Our results show that, given the same background environment, a storm that is more strongly initiated will exhibit faster updraft development and, possibly, quicker tornado production. The opposite can be said for storms that are more weakly initiated. Differences in initiation strength are also associated with different storm motions. These findings inspire future work to better relate supercell evolution to characteristics of initiation and the environment.

Flournoy’s current affiliations: NOAA/NWS/NCEP Storm Prediction Center, School of Meteorology, and Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew D. Flournoy, matthew.flournoy@noaa.gov

Abstract

Recent studies have shown how very small differences in the background environment of a supercell can yield different outcomes, particularly in terms of tornado production. In this study, we use a novel convection initiation technique to simulate six supercells with a focus on their early development. Each experiment is identical, except for the strength of thermal forcing for the initial convection initiation. Each experiment yields a mature supercell, but differences in storm-scale characteristics like updraft speed, cold pool temperature deficit, and vertical vorticity development abound. Of these, the time when the midlevel updraft strengthens is most strongly related to initiation strength, with stronger thermal forcing favoring quicker updraft development. The same is true for the low-level updraft, with the additional relationship that stronger thermal forcing also tends to yield stronger low-level updrafts for around the first 2 h of the simulations. The experiments with faster updraft development tend to be associated with more rapid surface vortex intensification; however, cold pool evolution differs between simulations with weaker versus stronger thermal forcing. Stronger thermal forcing also yields deviant rightward storm motion earlier in the supercell’s life cycle that remains more consistent for the duration of the simulation. These results highlight the range of supercellular outcomes that are possible across a background environment due to differences in storm-scale initiation strength. They are also of potential importance for predicting the paths and tornado potential of supercells in real time.

Significance Statement

Despite a better understanding of processes related to tornado production in supercell thunderstorms, forecasters still have difficulty discriminating between tornadic and nontornadic supercells in close proximity to each other within the same severe weather event. In this study, we use six simulations of supercells to examine how these different outcomes can occur. Our results show that, given the same background environment, a storm that is more strongly initiated will exhibit faster updraft development and, possibly, quicker tornado production. The opposite can be said for storms that are more weakly initiated. Differences in initiation strength are also associated with different storm motions. These findings inspire future work to better relate supercell evolution to characteristics of initiation and the environment.

Flournoy’s current affiliations: NOAA/NWS/NCEP Storm Prediction Center, School of Meteorology, and Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew D. Flournoy, matthew.flournoy@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 0.4354 MB)
Save
  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev., 121, 13541372, https://doi.org/10.1175/1520-0493(1993)121<1354:MOISCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, M., and C. J. Nowotarski, 2019: The influence of lifting condensation level on low-level outflow and rotation in simulated supercell thunderstorms. J. Atmos. Sci., 76, 13491372, https://doi.org/10.1175/JAS-D-18-0216.1.

    • Search Google Scholar
    • Export Citation
  • Brown, M., C. J. Nowotarski, A. R. Dean, B. T. Smith, R. L. Thompson, and J. M. Peters, 2021: The early evening transition in southeastern U.S. tornado environments. Wea. Forecasting, 36, 14311452, https://doi.org/10.1175/WAF-D-20-0191.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. R. Mansell, and Y. P. Richardson, 2012: Simulation of dryline misovortex dynamics and cumulus formation. Mon. Wea. Rev., 140, 35253551, https://doi.org/10.1175/MWR-D-11-00189.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and M. D. Parker, 2020: Insights into supercells and their environments from three decades of targeted radiosonde observations. Mon. Wea. Rev., 148, 48934915, https://doi.org/10.1175/MWR-D-20-0105.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., and M. D. Parker, 2015: Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon. Wea. Rev., 143, 42444277, https://doi.org/10.1175/MWR-D-15-0072.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2021: Invented forces in supercell models. J. Atmos. Sci., 78, 29272939, https://doi.org/10.1175/JAS-D-21-0082.1.

  • Dawson, D. T., II, B. Roberts, and M. Xue, 2019: A method to control the environmental wind profile in idealized simulations of deep convection with surface friction. Mon. Wea. Rev., 147, 39353954, https://doi.org/10.1175/MWR-D-18-0462.1.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 23812403, https://doi.org/10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2020: The relative importance of updraft and cold pool characteristics in supercell tornadogenesis using highly idealized simulations. J. Atmos. Sci., 77, 40894107, https://doi.org/10.1175/JAS-D-20-0126.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2022: Transition of near-ground vorticity dynamics during tornadogenesis. J. Atmos. Sci., 79, 467483, https://doi.org/10.1175/JAS-D-21-0181.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., M. C. Coniglio, E. N. Rasmussen, J. C. Furtado, and B. E. Coffer, 2020: Modes of storm-scale variability and tornado potential in VORTEX2 near- and far-field tornadic environments. Mon. Wea. Rev., 148, 41854207, https://doi.org/10.1175/MWR-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., M. C. Coniglio, and E. N. Rasmussen, 2021: Examining relationships between environmental conditions and supercell motion in time. Wea. Forecasting, 36, 737755, https://doi.org/10.1175/WAF-D-20-0192.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., A. W. Lyza, M. A. Satrio, M. R. Diedrichsen, M. C. Coniglio, and S. Waugh, 2022: A climatology of cell mergers with supercells and their association with mesocyclone evolution. Mon. Wea. Rev., 150, 451461, https://doi.org/10.1175/MWR-D-21-0204.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Search Google Scholar
    • Export Citation
  • Gropp, M. E., and C. E. Davenport, 2018: The impact of the nocturnal transition on the lifetime and evolution of supercell thunderstorms in the Great Plains. Wea. Forecasting, 33, 10451061, https://doi.org/10.1175/WAF-D-17-0150.1.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Search Google Scholar
    • Export Citation
  • Guarriello, F., C. J. Nowotarski, and C. C. Epifanio, 2018: Effects of the low-level wind profile on outflow position and near-surface vertical vorticity in simulated supercell thunderstorms. J. Atmos. Sci., 75, 731753, https://doi.org/10.1175/JAS-D-17-0174.1.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, https://doi.org/10.1175/2007MWR2285.1.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., A. J. Bedard Jr., and R. M. Hardesty, 1990: Details of colliding thunderstorm outflows as observed by Doppler lidar. J. Atmos. Sci., 47, 10811099, https://doi.org/10.1175/1520-0469(1990)047<1081:DOCTOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and T. M. Weckwerth, 2003: Forcing and organization of convective systems. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 30, Amer. Meteor. Soc., 75–104, https://doi.org/10.1175/0065-9401(2003)030<0075:FAOOCS>2.0.CO;2.

  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., E. Jo, L. R. Allen, B. N. Engelsen, and R. J. Trapp, 2021: Entrainment in a simulated supercell thunderstorm. Part I: The evolution of different entrainment mechanisms and their dilutive effects. J. Atmos. Sci., 78, 27252740, https://doi.org/10.1175/JAS-D-20-0223.1.

    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2014: Empirical examination of the factors regulating thunderstorm initiation. Mon. Wea. Rev., 142, 240258, https://doi.org/10.1175/MWR-D-13-00082.1.

    • Search Google Scholar
    • Export Citation
  • Magee, K. M., and C. E. Davenport, 2020: An observational analysis quantifying the distance of supercell–boundary interactions in the Great Plains. J. Oper. Meteor., 8, 1538, https://doi.org/10.15191/nwajom.2020.0802.

    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., III, 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 14741492, https://doi.org/10.1175/1520-0493(1988)116<1474:GFCATK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, https://doi.org/10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, https://doi.org/10.1175/JAS-D-16-0150.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2020: What is the intrinsic predictability of tornadic supercell thunderstorms? Mon. Wea. Rev., 148, 31573180, https://doi.org/10.1175/MWR-D-20-0076.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 372 pp.

  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, E. N. Rasmussen, and D. O. Blanchard, 1998: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126, 29592971, https://doi.org/10.1175/1520-0493(1998)126<2959:VOSRHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, https://doi.org/10.1175/MWR3059.1.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 36993705, https://doi.org/10.1175/MWR-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., J. Marquis, A. Varble, and K. Friedrich, 2021: Radiosonde observations of environments supporting deep moist convection initiation during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 289309, https://doi.org/10.1175/MWR-D-20-0148.1.

    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riganti, C. J., and A. L. Houston, 2017: Rear-flank outflow dynamics and thermodynamics in the 10 June 2010 Last Chance, Colorado, supercell. Mon. Wea. Rev., 145, 24872504, https://doi.org/10.1175/MWR-D-16-0128.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., and M. Xue, 2017: The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 74, 30553077, https://doi.org/10.1175/JAS-D-16-0364.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson II, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, https://doi.org/10.1175/JAS-D-15-0332.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, and D. T. Dawson II, 2020: The effect of surface drag strength on mesocyclone intensification and tornadogenesis in idealized supercell simulations. J. Atmos. Sci., 77, 16991721, https://doi.org/10.1175/JAS-D-19-0109.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schueth, A., C. Weiss, and J. M. L. Dahl, 2021: Comparing observations and simulations of the streamwise vorticity current and the forward flank convergence boundary in a supercell storm. Mon. Wea. Rev., 149, 16511671, https://doi.org/10.1175/MWR-D-20-0251.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, L. J. Wicker, C. K. Potvin, and D. C. Dowell, 2015: Forcing mechanisms for an internal rear-flank downdraft momentum surge in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 143, 43054330, https://doi.org/10.1175/MWR-D-15-0164.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976, https://doi.org/10.1175/MWR2839.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026, https://doi.org/10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, M. S. Buban, Y. P. Richardson, L. J. Miller, and R. M. Rabin, 2007: The “triple point” on 24 May 2002 during IHOP. Part II: Ground-radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135, 24432472, https://doi.org/10.1175/MWR3411.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 713 713 31
Full Text Views 397 397 14
PDF Downloads 454 454 20