An Investigation of a Northeast U.S. Cyclone Event without Well-Defined Snow Banding during IMPACTS

Brian A. Colle aSchool of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4546-5472
,
Phillip Yeh aSchool of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Phillip Yeh in
Current site
Google Scholar
PubMed
Close
,
Joseph A. Finlon bDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Joseph A. Finlon in
Current site
Google Scholar
PubMed
Close
,
Lynn McMurdie bDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Lynn McMurdie in
Current site
Google Scholar
PubMed
Close
,
Victoria McDonald bDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Victoria McDonald in
Current site
Google Scholar
PubMed
Close
, and
Andrew DeLaFrance bDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Andrew DeLaFrance in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 7 February 2020 a relatively deep cyclone (∼980 hPa) with midlevel frontogenesis produced heavy snow (20–30 mm liquid equivalent) over western and central New York State. Despite these characteristics, the precipitation was not organized into a narrow band of intensive snowfall. This event occurred during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign. Using coordinated flight legs across New York State, a remote sensing aircraft (ER-2) sampled above the cloud, while a P-3 aircraft collected in-cloud data. These data are used to validate several Weather Research and Forecasting (WRF) Model simulations at 2- and 0.67-km grid spacing using different initial and boundary conditions (RAP, GFS, and ERA5 analyses) and microphysics schemes (Thompson and P3). The differences between the WRF runs are used to explore sensitivity to initial conditions and microphysics schemes. All 18–24-h runs realistically produced a broad sloping region of frontogenesis at midlevels typically; however, there were relatively large (20%–30%) uncertainties in the magnitude of this forcing using different analyses and initialization times. The differences in surface precipitation distribution are small (<10%) among the microphysics schemes, likely because there was little riming in the region of heaviest precipitation. Those runs with frontogenesis closest to the RAP analysis and a surface precipitation underprediction of 20%–30% have too little ice aloft and at low levels, suggesting deficiencies in ice generation and snow growth aloft in those runs. The 0.67-km grid produced more realistic convective cells aloft, but only 5%–10% more precipitation than the 2-km grid.

Significance Statement

Heavy snowfall from U.S. East Coast winter storms can cause major societal problems, yet few studies have investigated these storms using field observations and model data. This study focuses on the 7 February 2020 event, where 20–40 cm of snow fell over west-central New York. Our analysis shows a broad region of ascent, rather than a concentrated region favoring a well-defined snowband was the primary process contributing to snowfall. Last, model microphysics were validated within this storm using the in situ aircraft data. Errors in the snow generation aloft and snow growth at low levels likely contributed to the simulated surface precipitation underprediction, but most of the forecast uncertainty is from initial conditions for this short-term (∼24-h lead time) forecast.

Finlon’s current affiliations: University of Maryland, College Park, College Park, Maryland; and NASA Goddard Space Flight Center, Greenbelt, Maryland.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian A. Colle, brian.colle@stonybrook.edu

Abstract

On 7 February 2020 a relatively deep cyclone (∼980 hPa) with midlevel frontogenesis produced heavy snow (20–30 mm liquid equivalent) over western and central New York State. Despite these characteristics, the precipitation was not organized into a narrow band of intensive snowfall. This event occurred during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign. Using coordinated flight legs across New York State, a remote sensing aircraft (ER-2) sampled above the cloud, while a P-3 aircraft collected in-cloud data. These data are used to validate several Weather Research and Forecasting (WRF) Model simulations at 2- and 0.67-km grid spacing using different initial and boundary conditions (RAP, GFS, and ERA5 analyses) and microphysics schemes (Thompson and P3). The differences between the WRF runs are used to explore sensitivity to initial conditions and microphysics schemes. All 18–24-h runs realistically produced a broad sloping region of frontogenesis at midlevels typically; however, there were relatively large (20%–30%) uncertainties in the magnitude of this forcing using different analyses and initialization times. The differences in surface precipitation distribution are small (<10%) among the microphysics schemes, likely because there was little riming in the region of heaviest precipitation. Those runs with frontogenesis closest to the RAP analysis and a surface precipitation underprediction of 20%–30% have too little ice aloft and at low levels, suggesting deficiencies in ice generation and snow growth aloft in those runs. The 0.67-km grid produced more realistic convective cells aloft, but only 5%–10% more precipitation than the 2-km grid.

Significance Statement

Heavy snowfall from U.S. East Coast winter storms can cause major societal problems, yet few studies have investigated these storms using field observations and model data. This study focuses on the 7 February 2020 event, where 20–40 cm of snow fell over west-central New York. Our analysis shows a broad region of ascent, rather than a concentrated region favoring a well-defined snowband was the primary process contributing to snowfall. Last, model microphysics were validated within this storm using the in situ aircraft data. Errors in the snow generation aloft and snow growth at low levels likely contributed to the simulated surface precipitation underprediction, but most of the forecast uncertainty is from initial conditions for this short-term (∼24-h lead time) forecast.

Finlon’s current affiliations: University of Maryland, College Park, College Park, Maryland; and NASA Goddard Space Flight Center, Greenbelt, Maryland.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian A. Colle, brian.colle@stonybrook.edu
Save
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and Coauthors, 2020: A technical overview of the New York State mesonet standard network. J. Atmos. Oceanic Technol., 37, 18271845, https://doi.org/10.1175/JTECH-D-19-0220.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., D. Stark, and S. E. Yuter, 2014: Surface microphysical observations within East Coast winter storms on Long Island, New York. Mon. Wea. Rev., 142, 31263146, https://doi.org/10.1175/MWR-D-14-00035.1.

    • Search Google Scholar
    • Export Citation
  • Connelly, R., and B. A. Colle, 2019: Validation of snow multi-bands in the comma head of a cyclone using a 40-member ensemble. Wea. Forecasting, 34, 13431363, https://doi.org/10.1175/WAF-D-18-0182.1.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., L. A. McMurdie, and R. J. Chase, 2022: Investigation of microphysical properties within regions of enhanced dual-frequency ratio during the IMPACTS field campaign. J. Atmos. Sci., 79, 27732795, https://doi.org/10.1175/JAS-D-21-0311.1.

    • Search Google Scholar
    • Export Citation
  • Ganetis, S. A., B. A. Colle, S. E. Yuter, and N. P. Hoban, 2018: Environmental conditions associated with observed snowband structures within Northeast U.S. winter storms. Mon. Wea. Rev., 146, 36753690, https://doi.org/10.1175/MWR-D-18-0054.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and P. V. Hobbs, 1991: Organization and structure of clouds and precipitation on the mid-Atlantic coast of the United States. Part IV: Retrieval of the thermodynamic and microphysical structures of a frontal rainband from Doppler radar data. J. Atmos. Sci., 48, 12871305, https://doi.org/10.1175/1520-0469(1991)048<1287:OASOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Y. Matrosov, and N. B. Wood, 2016: Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat. J. Appl. Meteor. Climatol., 55, 20632090, https://doi.org/10.1175/JAMC-D-15-0290.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, K. R. Biswas, and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868878, https://doi.org/10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jurewicz, M. L., Sr., and M. S. Evans, 2004: A comparison of two banded, heavy snowstorms with very different synoptic settings. Wea. Forecasting, 19, 10111028, https://doi.org/10.1175/WAF-823.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and G. Thompson, 2019: Hydrometeor lofting and mesoscale snowbands. Mon. Wea. Rev., 147, 38793899, https://doi.org/10.1175/MWR-D-19-0036.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., R. E. Stewart, and L. J. Angus, 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229, https://doi.org/10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (Stereo) probe: Design and preliminary tests of a new airborne, high- speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., P. J. Restrepo, and D. P. Lettenmaier, 2011: Development of a unified land model for prediction of surface hydrology and land–atmosphere interactions. J. Hydrometeor., 12, 12991320, https://doi.org/10.1175/2011JHM1361.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. A. Finlon, D. M. Stechman, W. Wu, R. C. Jackson, and M. Freer, 2018: University of Illinois/Oklahoma Optical Array Probe (OAP) Processing Software. Zenodo, accessed 1 December 2021, https://doi.org/10.5281/zenodo.1285969.

  • McMurdie, L. A., G. Heymsfield, J. E. Yorks, and S. A. Braun, 2019: Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) collection. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 1 November 2021, https://doi.org/10.5067/IMPACTS/DATA101.

  • McMurdie, L. A., and Coauthors, 2022: Chasing snowstorms: The Investigation of Micro-physics and Precipitation for Atlantic Coast-threatening Snowstorms (IMPACTS) campaign. Bull. Amer. Meteor. Soc., 103, E1243E1269, https://doi.org/10.1175/BAMS-D-20-0246.1.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., B. A. Colle, S. E. Yuter, and D. Stark, 2016: Comparisons of modeled and observed reflectivity and fall speeds for snowfall of varied riming degree during winter storms on Long Island, NY. Mon. Wea. Rev., 144, 43274347, https://doi.org/10.1175/MWR-D-15-0397.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Naeger, A. R., B. A. Colle, N. Zhou, and A. Molthan, 2020: Evaluating warm and cold rain processes in cloud microphysical schemes using OLYMPEX field measurements. Mon. Wea. Rev., 148, 21632190, https://doi.org/10.1175/MWR-D-19-0092.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2015a: NCEP GFS 0.25 degree global forecast grids historical archive. Dept. of Commerce/NOAA/NWS/NCEP, National Center for Atmospheric Research Computational and Information Systems Laboratory, accessed 1 December 2021, https://doi.org/10.5065/D65D8PWK.

  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2015b: NCEP North American Mesoscale (NAM) 12 km Analysis. Dept. of Commerce/NOAA/NWS/NCEP, National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 1 December 2021, https://doi.org/10.5065/G4RC-1N91.

  • National Operational Hydrologic Remote Sensing Center, 2004: Snow Data Assimilation System (SNODAS) data products at NSIDC, version 1. National Snow and Ice Data Center, accessed 1 December 2021, https://doi.org/10.7265/N5TB14TC.

  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season-banded precipitation in Northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, https://doi.org/10.1175/815.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, https://doi.org/10.1175/2007MWR2233.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, https://doi.org/10.1175/2010MWR3219.1.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Motion and Motion Systems. Vol. I, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Picca, J. C., D. M. Schultz, B. A. Colle, S. Ganetis, D. R. Novak, and M. J. Sienkiewicz, 2014: The value of dual-polarization radar in diagnosing the complex microphysical evolution of an intense snowband. Bull. Amer. Meteor. Soc., 95, 18251834, https://doi.org/10.1175/BAMS-D-13-00258.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma-head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, https://doi.org/10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma-head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, https://doi.org/10.1175/JAS-D-14-0354.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and S. W. Nesbitt, 2018: Radar Meteorology: A First Course. John Wiley & Sons, 496 pp.

  • Rauber, R. M., S. M. Ellis, J. Vivekanandan, J. Stith, W.-C. Lee, G. M. McFarquhar, and B. F. Jewett, 2017: Finescale structure of a snowstorm over the northeastern United States: A first look at high-resolution HIAPER cloud radar observations. Bull. Amer. Meteor. Soc., 98, 253269, https://doi.org/10.1175/BAMS-D-15-00180.1.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma-head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and L. F. Bosart, 1985: Mesoscale structure in the megalopolitan snowstorm, 11–12 February 1983. Part II: Doppler radar study of the New England snowband. J. Atmos. Sci., 42, 13981407, https://doi.org/10.1175/1520-0469(1985)042<1398:MSITMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110, https://doi.org/10.1175/MWR3400.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thiébaux, J., E. Rogers, W. Wang, and B. Katz, 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645656, https://doi.org/10.1175/BAMS-84-5-645.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tomkins, L. M., S. Yuter, M. Miller, and L. Allen, 2022: Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data. Atmos. Meas. Tech., 15, 55155525, https://doi.org/10.5194/amt-15-5515-2022.

    • Search Google Scholar
    • Export Citation
  • Trapp, J. R., D. M. Schultz, A. V. Ryzhkov, and R. L. Holle, 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501, https://doi.org/10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Varcie, M. M., and Coauthors, 2023: Precipitation growth processes in the comma-head region of the 7 February 2020 Northeast snowstorm: Results from IMPACTS. J. Atmos. Sci., 80, 329, https://doi.org/10.1175/JAS-D-22-0118.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 489 489 30
Full Text Views 154 154 15
PDF Downloads 167 167 15