Polarimetric Radar Observations of a Long-Lived Supercell and Associated Tornadoes on 10–11 December 2021

Matthew S. Van Den Broeke aDepartment of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Matthew S. Van Den Broeke in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1114-0987
,
Matthew B. Wilson aDepartment of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Matthew B. Wilson in
Current site
Google Scholar
PubMed
Close
,
Cynthia A. Van Den Broeke bLincoln, Nebraska

Search for other papers by Cynthia A. Van Den Broeke in
Current site
Google Scholar
PubMed
Close
,
Devon J. Healey aDepartment of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Devon J. Healey in
Current site
Google Scholar
PubMed
Close
,
Michaela J. Wood aDepartment of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Michaela J. Wood in
Current site
Google Scholar
PubMed
Close
, and
Raychel E. Nelson aDepartment of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Raychel E. Nelson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present environmental and polarimetric radar observations of a long-lived December supercell that tracked approximately 750 km from Arkansas to northern Kentucky. The storm was associated with two long-track EF4 tornadoes, one of which was among the longest-tracked tornadoes recorded in the United States. The supercell’s life cycle is documented from 2000 UTC 10 to 0700 UTC 11 December 2021, using data from five operational polarimetric weather radars. After convection initiation in central Arkansas, it took nearly 4 h for a supercell to develop. Afterward, the storm’s ZDR column and arc became anomalously large leading up to genesis of the first EF4 tornado. During this time, the storm’s environment had moderate convective available potential energy (CAPE) and strong deep-layer shear. A cell interaction at about 0200 UTC disrupted the supercell updraft, weakening the ZDR arc and column, and initiating the largest radar-implied hailfall event observed with this storm. The remnant circulation associated with the first EF4 tornado did not fully dissipate, and it appeared to merge with the low-level mesocyclone on the nose of a rear-flank downdraft surge likely initiated by the hailfall. It is hypothesized that this merger was important to the intensification of the storm’s second EF4 tornado, which lasted nearly 3 h and traveled approximately 267 km. During the second EF4 tornado the storm experienced decreasing CAPE and increasing storm relative helicity. Increasing interactions with other cells eventually weakened the storm, and its original updraft was obscured before the storm’s remnants dissipated in northern Kentucky.

Significance Statement

In December 2021, a long-lived supercell thunderstorm produced two long-track, violent tornadoes, including one that produced historic damage across western Kentucky. Radar observations indicate that, once the storm became a supercell, its updraft became anomalously large relative to similar storms studied prior. Simultaneously its storm-relative inflow strengthened markedly, supporting the first long-lived tornado. Interactions with a developing thunderstorm disrupted the supercell’s updraft, leading to hail fallout and updraft weakening. The remnant circulation associated with the first strong tornado merged with the supercell’s updraft and became a rotation source for the second long-track tornado, which persisted for nearly 3 h. Eventually interactions with other thunderstorms weakened the supercell.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew S. Van Den Broeke, mvandenbroeke2@unl.edu.

Abstract

We present environmental and polarimetric radar observations of a long-lived December supercell that tracked approximately 750 km from Arkansas to northern Kentucky. The storm was associated with two long-track EF4 tornadoes, one of which was among the longest-tracked tornadoes recorded in the United States. The supercell’s life cycle is documented from 2000 UTC 10 to 0700 UTC 11 December 2021, using data from five operational polarimetric weather radars. After convection initiation in central Arkansas, it took nearly 4 h for a supercell to develop. Afterward, the storm’s ZDR column and arc became anomalously large leading up to genesis of the first EF4 tornado. During this time, the storm’s environment had moderate convective available potential energy (CAPE) and strong deep-layer shear. A cell interaction at about 0200 UTC disrupted the supercell updraft, weakening the ZDR arc and column, and initiating the largest radar-implied hailfall event observed with this storm. The remnant circulation associated with the first EF4 tornado did not fully dissipate, and it appeared to merge with the low-level mesocyclone on the nose of a rear-flank downdraft surge likely initiated by the hailfall. It is hypothesized that this merger was important to the intensification of the storm’s second EF4 tornado, which lasted nearly 3 h and traveled approximately 267 km. During the second EF4 tornado the storm experienced decreasing CAPE and increasing storm relative helicity. Increasing interactions with other cells eventually weakened the storm, and its original updraft was obscured before the storm’s remnants dissipated in northern Kentucky.

Significance Statement

In December 2021, a long-lived supercell thunderstorm produced two long-track, violent tornadoes, including one that produced historic damage across western Kentucky. Radar observations indicate that, once the storm became a supercell, its updraft became anomalously large relative to similar storms studied prior. Simultaneously its storm-relative inflow strengthened markedly, supporting the first long-lived tornado. Interactions with a developing thunderstorm disrupted the supercell’s updraft, leading to hail fallout and updraft weakening. The remnant circulation associated with the first strong tornado merged with the supercell’s updraft and became a rotation source for the second long-track tornado, which persisted for nearly 3 h. Eventually interactions with other thunderstorms weakened the supercell.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew S. Van Den Broeke, mvandenbroeke2@unl.edu.

Supplementary Materials

    • Supplemental Materials (ZIP 47.719 MB)
Save
  • Adlerman, E. J., and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 35953623, https://doi.org/10.1175/MWR3039.1.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., M. L. Ekster, J. W. Dellicarpini, and E. J. Lyons, 2012: A multiscale analysis of the 1 June 2011 northeast U.S. severe weather outbreak and associated Springfield, Massachusetts tornado. Electron. J. Severe Storms Meteor., 7 (7), https://ejssm.com/ojs/index.php/site/article/view/43.

    • Search Google Scholar
    • Export Citation
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, https://doi.org/10.1175/MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Belo-Pereira, M., C. Andrade, and P. Pinto, 2017: A long-lived tornado on 7 December 2010 in mainland Portugal. Atmos. Res., 185, 202215, https://doi.org/10.1016/j.atmosres.2016.11.002.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), https://ejssm.com/ojs/index.php/site/article/view/34.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2009: The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007. Wea. Forecasting, 24, 899920, https://doi.org/10.1175/2009WAF2222206.1.

    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, https://doi.org/10.1175/WAF-D-11-00158.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, https://doi.org/10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006a: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., J. S. Johnson, L. J. Czepyha, J. M. Grzywacz, B. A. Klimowski, and M. R. Hjelmfelt, 2006b: An observational examination of long-lived supercells. Part II: Environmental conditions and forecasting. Wea. Forecasting, 21, 689714, https://doi.org/10.1175/WAF952.1.

    • Search Google Scholar
    • Export Citation
  • Chrisman, J. N., 2014: The continuing evolution of dynamic scanning. NEXRAD Now, No. 23, NOAA/NWS/Radar Operations Center, 8–13, https://www.roc.noaa.gov/wsr88d/PublicDocs/NNOW/NNow23a.pdf.

  • Coniglio, M. C., 2012: Verification of RUC 0–1-h forecasts and SPC mesoscale analyses using VORTEX2 soundings. Wea. Forecasting, 27, 667683, https://doi.org/10.1175/WAF-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and R. E. Jewell, 2022: SPC mesoscale analysis compared to field-project soundings: Implications for supercell environment studies. Mon. Wea. Rev., 150, 567588, https://doi.org/10.1175/MWR-D-21-0222.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Crowe, C. C., C. J. Schultz, M. Kumjian, L. D. Carey, and W. A. Petersen, 2012: Use of dual-polarization signatures in diagnosing tornadic potential. Electron. J. Oper. Meteor., 13, 5778.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., 2021: Environmental evolution of long-lived supercell thunderstorms in the Great Plains. Wea. Forecasting, 36, 21872209, https://doi.org/10.1175/WAF-D-21-0042.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Emmerson, S. W., S. E. Nelson, and A. K. Baker, 2019: A comprehensive analysis of tornado debris signatures associated with significant tornadoes from 2010–2017. 18th Annual Student Conf., Phoenix, AZ, Amer. Meteor. Soc., S210, https://ams.confex.com/ams/2019Annual/webprogram/Paper356019.html.

  • Finch, J. D., and D. Bikos, 2010: A long-lived tornadic supercell over Colorado and Wyoming, 22 May 2008. Electron. J. Severe Storms Meteor., 5 (5), https://ejssm.com/ojs/index.php/site/article/view/25.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., A. W. Lyza, M. A. Satrio, M. R. Diedrichsen, M. C. Coniglio, and S. Waugh, 2022: A climatology of cell mergers with supercells and their association with mesocyclone evolution. Mon. Wea. Rev., 150, 451461, https://doi.org/10.1175/MWR-D-21-0204.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., and D. M. Kingfield, 2021: Tornado formation and intensity prediction using polarimetric radar estimates of updraft area. Wea. Forecasting, 36, 22112231, https://doi.org/10.1175/WAF-D-21-0087.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno-Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, https://doi.org/10.1175/MWR-D-14-00349.1.

    • Search Google Scholar
    • Export Citation
  • Garner, J. M., 2007: A preliminary study on environmental parameters related to tornado path length. NWA Rep. 2007-EJ5, 29 pp., https://nwafiles.nwas.org/ej/pdf/2007-EJ5.pdf.

  • Garner, J. M., W. C. Iwasko, T. D. Jewel, R. L. Thompson, and B. T. Smith, 2021: An environmental study on tornado pathlength, longevity, and width. Wea. Forecasting, 36, 14711490, https://doi.org/10.1175/WAF-D-20-0230.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., T. Andretta, S. J. Luberda, J. Vogt, Y. Wang, L. D. Oolman, D. Bikos, and J. Finch, 2009: A case study of a long-lived tornadic mesocyclone in a low-CAPE complex-terrain environment. Electron. J. Severe Storms Meteor., 4 (3), https://ejssm.com/ojs/index.php/site/article/view/20.

    • Search Google Scholar
    • Export Citation
  • Griffin, C. B., D. J. Bodine, and R. D. Palmer, 2017: Kinematic and polarimetric radar observations of the 10 May 2010, Moore–Choctaw, Oklahoma, tornadic debris signature. Mon. Wea. Rev., 145, 27232741, https://doi.org/10.1175/MWR-D-16-0344.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing characteristics of tornadic and nontornadic supercell storms from composite mean analyses of radar observations. Mon. Wea. Rev., 148, 50155040, https://doi.org/10.1175/MWR-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 41014130, https://doi.org/10.1175/MWR-D-15-0408.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.1002/qj.49711347604.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., D. W. Burgess, C. A. Doswell III, M. S. Gilmore, J. A. Hart, and S. F. Piltz, 2013: The 1925 Tri-State tornado damage path and associated storm system. Electron. J. Severe Storms Meteor., 8 (2), https://ejssm.com/ojs/index.php/site/article/view/47.

    • Search Google Scholar
    • Export Citation
  • Karra, K., C. Kontgis, Z. Statman-Weil, J. C. Mazzariello, M. Mathis, and S. P. Brumby, 2021: Global land use/land cover with Sentinel 2 and deep learning. 2021 IEEE Int. Geoscience and Remote Sensing Symp. IGARSS, Brussels, Belgium, Institute of Electrical and Electronics Engineers, 4704–4707, https://doi.org/10.1109/IGARSS47720.2021.9553499.

  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, https://doi.org/10.1175/2008JAS2815.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, https://doi.org/10.1175/2010MWR3322.1.

    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, https://doi.org/10.1175/MWR-D-14-00357.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1998: The radar “three-body scatter spike”: An operational large-hail signature. Wea. Forecasting, 13, 327340, https://doi.org/10.1175/1520-0434(1998)013<0327:TRTBSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., and L. R. Lemon, 2007: Preliminary observations of weak three-body scatter spikes associated with low-end severe hail. Electron. J. Severe Storms Meteor., 2 (3), https://ejssm.org/archives/wp-content/uploads/2021/09/vol2-3.pdf.

    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., and M. R. Kumjian, 2018: Quantifying the separation of enhanced ZDR and KDP regions in nonsupercell tornadic storms. Wea. Forecasting, 33, 11431157, https://doi.org/10.1175/WAF-D-18-0011.1.

    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., M. R. Kumjian, M. Jurewicz, and M. M. French, 2020: Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting. Geophys. Res. Lett., 47, e2020GL088242, https://doi.org/10.1029/2020GL088242.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748, https://doi.org/10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Environmental factors influential to the duration and intensity of tornadoes in simulated supercells. Geophys. Res. Lett., 39, L17802, https://doi.org/10.1029/2012GL053041.

    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., K. L. Elmore, and S. J. Weiss, 2010: Assessing the impacts of proximity sounding criteria on the climatology of significant tornado environments. Wea. Forecasting, 25, 921930, https://doi.org/10.1175/2010WAF2222368.1.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. M., W. D. Zittel, R. R. Lee, V. M. Melnikov, R. L. Ice, and J. G. Cunningham, 2017: Bragg scatter detection by the WSR-88D. Part II: Assessment of ZDR bias estimation. J. Atmos. Oceanic Technol., 34, 479493, https://doi.org/10.1175/JTECH-D-16-0031.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, https://doi.org/10.1175/2008MWR2330.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Satrio, C. N., D. J. Bodine, R. D. Palmer, and C. M. Kuster, 2021: Multi-radar analysis of the 20 May 2013 Moore, Oklahoma supercell through tornadogenesis and intensification. Atmosphere, 12, 313, https://doi.org/10.3390/atmos12030313.

    • Search Google Scholar
    • Export Citation
  • Scheffknecht, P., S. Serafin, and V. Grubišić, 2017: A long-lived supercell over mountainous terrain. Quart. J. Roy. Meteor. Soc., 143, 29732986, https://doi.org/10.1002/qj.3127.

    • Search Google Scholar
    • Export Citation
  • Segall, J. H., M. M. French, D. M. Kingfield, S. D. Loeffler, and M. R. Kumjian, 2021: Storm-scale polarimetric radar signatures associated with tornado dissipation in supercells. Wea. Forecasting, 37, 321, https://doi.org/10.1175/WAF-D-21-0067.1.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Strader, S. M., and W. S. Ashley, 2014: Cloud-to-ground lightning signatures of long-lived tornadic supercells on 27–28 April 2011. Phys. Geogr., 35, 273296, https://doi.org/10.1080/02723646.2014.918527.

    • Search Google Scholar
    • Export Citation
  • Straka, J., and K. Kanak, 2022: A climatology of long-track tornadoes. Electron. J. Severe Storms Meteor., 17 (1), https://ejssm.com/ojs/index.php/site/article/view/82.

    • Search Google Scholar
    • Export Citation
  • Straka, J., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Umeyama, A., B. L. Cheong, S. Torres, and D. Bodine, 2018: Orientation analysis of simulated tornadic debris. J. Atmos. Oceanic Technol., 35, 9931010, https://doi.org/10.1175/JTECH-D-17-0140.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, https://doi.org/10.1175/JAMC-D-15-0077.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2020: A preliminary polarimetric radar comparison of pretornadic and nontornadic supercell storms. Mon. Wea. Rev., 148, 15671584, https://doi.org/10.1175/MWR-D-19-0296.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172231, https://doi.org/10.1175/JAMC-D-14-0094.1.

    • Search Google Scholar
    • Export Citation
  • Wang, E. Y., D. J. Bodine, J. M. Kurdzo, J. Barham, C. Bowman, and P. Pietrycha, 2020: Polarimetric characteristics of tornado debris fallout during the May 28 2019 Lawrence/Kansas City, KS tornado. Severe Local Storms Symp., Boston, MA, Amer. Meteor. Soc., 925, https://ams.confex.com/ams/2020Annual/mediafile/Manuscript/Paper363530/SLS_SYMP_2020.pdf.

  • Wienhoff, Z. B., H. B. Bluestein, D. W. Reif, R. M. Wakimoto, L. J. Wicker, and J. M. Kurdzo, 2020: Analysis of debris signature characteristics and evolution in the 24 May 2016 Dodge City, Kansas, tornadoes. Mon. Wea. Rev., 148, 50635086, https://doi.org/10.1175/MWR-D-20-0162.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. B., and M. S. Van Den Broeke, 2021: An automated Python algorithm to quantify ZDR arc and KDPZDR separation signatures in supercells. J. Atmos. Oceanic Technol., 38, 371386, https://doi.org/10.1175/JTECH-D-20-0056.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. B., and M. S. Van Den Broeke, 2022: Using the Supercell Polarimetric Observation Research Kit (SPORK) to examine a large sample of pretornadic and nontornadic supercells. Electron. J. Severe Storms Meteor., 17 (2), https://ejssm.com/ojs/index.php/site/article/view/85.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, J. M. Straka, D. R. MacGorman, and D. W. Burgess, 2010: The impact of spatial variation of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766, https://doi.org/10.1175/2009MWR3010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 606 606 32
Full Text Views 279 279 30
PDF Downloads 304 304 34