Exploring the Value of a High-Precision Targeted Observation Strategy for Mobile Radiosonde Deployment

Isaac Arseneau aTexas Tech University, Lubbock, Texas

Search for other papers by Isaac Arseneau in
Current site
Google Scholar
PubMed
Close
and
Brian Ancell aTexas Tech University, Lubbock, Texas

Search for other papers by Brian Ancell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensemble sensitivity analysis (ESA) is a numerical method by which the potential value of a single additional observation can be estimated using an ensemble numerical weather forecast. By performing ESA observation targeting on runs of the Texas Tech University WRF Ensemble from the spring of 2016, a dataset of predicted variance reductions (hereinafter referred to as target values) was obtained over approximately 6 weeks of convective forecasts for the central United States. It was then ascertained from these cases that the geographic variation in target values is large for any one case, with local maxima often several standard deviations higher than the mean and surrounded by sharp gradients. Radiosondes launched from the surface, then, would need to take this variation into account to properly sample a specific target by launching upstream of where the target is located rather than directly underneath. In many cases, the difference between the maximum target value in the vertical and the actual target value observed along the balloon path was multiple standard deviations. This may help to explain the lower-than-expected forecast improvements observed in previous ESA targeting experiments, especially the Mesoscale Predictability Experiment (MPEX). If target values are a good predictor of observation value, then it is possible that taking the balloon path into account in targeting systems for radiosonde deployment may substantially improve on the value added to the forecast by individual observations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isaac Arseneau, isaac.arseneau@ttu.edu

Abstract

Ensemble sensitivity analysis (ESA) is a numerical method by which the potential value of a single additional observation can be estimated using an ensemble numerical weather forecast. By performing ESA observation targeting on runs of the Texas Tech University WRF Ensemble from the spring of 2016, a dataset of predicted variance reductions (hereinafter referred to as target values) was obtained over approximately 6 weeks of convective forecasts for the central United States. It was then ascertained from these cases that the geographic variation in target values is large for any one case, with local maxima often several standard deviations higher than the mean and surrounded by sharp gradients. Radiosondes launched from the surface, then, would need to take this variation into account to properly sample a specific target by launching upstream of where the target is located rather than directly underneath. In many cases, the difference between the maximum target value in the vertical and the actual target value observed along the balloon path was multiple standard deviations. This may help to explain the lower-than-expected forecast improvements observed in previous ESA targeting experiments, especially the Mesoscale Predictability Experiment (MPEX). If target values are a good predictor of observation value, then it is possible that taking the balloon path into account in targeting systems for radiosonde deployment may substantially improve on the value added to the forecast by individual observations.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isaac Arseneau, isaac.arseneau@ttu.edu
Save
  • Ancell, B. C., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, https://doi.org/10.1175/2007MWR1904.1.

    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., A. Bogusz, M. J. Lauridsen, and C. J. Nauert, 2018: Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments. Bull. Amer. Meteor. Soc., 99, 615628, https://doi.org/10.1175/BAMS-D-17-0129.1.

    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., Z.-Q. Lu, and C. Snyder, 1999: Statistical design for adaptive weather observations. J. Atmos. Sci., 56, 25362552, https://doi.org/10.1175/1520-0469(1999)056<2536:SDFAWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651661, https://doi.org/10.1175/WAF993.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. M. Hitchcock, and K. H. Knopfmeier, 2016: Impact of assimilating preconvective upsonde observations on short-term forecasts of convection observed during MPEX. Mon. Wea. Rev., 144, 43014325, https://doi.org/10.1175/MWR-D-16-0091.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted AERI and Doppler lidar wind retrievals on short-term forecasts of the initiation and early evolution of thunderstorms. Mon. Wea. Rev., 147, 11491170, https://doi.org/10.1175/MWR-D-18-0351.1.

    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and B. C. Ancell, 2020: Factors influencing ensemble sensitivity–based targeted observing predictions at convection-allowing resolutions. Mon. Wea. Rev., 148, 44974517, https://doi.org/10.1175/MWR-D-20-0015.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and I. B. Mason, 2011: Deterministic forecasts of binary events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed. I. T. Jolliffe and D. B. Stephenson, Eds., J. Wiley & Sons, Ltd., 31–59, https://doi.org/10.1002/9781119960003.ch3.

  • Langland, R. H., and Coauthors, 1999: The North Pacific Experiment (NORPEX-98): Targeted observations for improved North American weather forecasts. Bull. Amer. Meteor. Soc., 80, 13631384, https://doi.org/10.1175/1520-0477(1999)080<1363:TNPENT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 134, 13271335, https://doi.org/10.1002/qj.280.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., 2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97, 22872303, https://doi.org/10.1175/BAMS-D-14-00259.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, https://doi.org/10.1175/MWR-D-15-0407.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Smith, N. H., and B. C. Ancell, 2017: Ensemble sensitivity analysis of wind ramp events with applications to observation targeting. Mon. Wea. Rev., 145, 25052522, https://doi.org/10.1175/MWR-D-16-0306.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, https://doi.org/10.1175/BAMS-D-13-00281.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 529 529 19
Full Text Views 136 136 4
PDF Downloads 145 145 4