Development and Investigation of GridRad-Severe, a Multiyear Severe Event Radar Dataset

Amanda M. Murphy aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Amanda M. Murphy in
Current site
Google Scholar
PubMed
Close
,
Cameron R. Homeyer aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
, and
Kiley Q. Allen aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Kiley Q. Allen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many studies have aimed to identify novel storm characteristics that are indicative of current or future severe weather potential using a combination of ground-based radar observations and severe reports. However, this is often done on a small scale using limited case studies on the order of tens to hundreds of storms due to how time-intensive this process is. Herein, we introduce the GridRad-Severe dataset, a database including ∼100 severe weather days per year and upward of 1.3 million objectively tracked storms from 2010 to 2019. Composite radar volumes spanning objectively determined, report-centered domains are created for each selected day using the GridRad compositing technique, with dates objectively determined using report thresholds defined to capture the highest-end severe weather days from each year, evenly distributed across all severe report types (tornadoes, severe hail, and severe wind). Spatiotemporal domain bounds for each event are objectively determined to encompass both the majority of reports and the time of convection initiation. Severe weather reports are matched to storms that are objectively tracked using the radar data, so the evolution of the storm cells and their severe weather production can be evaluated. Herein, we apply storm mode (single-cell, multicell, or mesoscale convective system storms) and right-moving supercell classification techniques to the dataset, and revisit various questions about severe storms and their bulk characteristics posed and evaluated in past work. Additional applications of this dataset are reviewed for possible future studies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amanda M. Murphy, amanda.murphy@ou.edu

Abstract

Many studies have aimed to identify novel storm characteristics that are indicative of current or future severe weather potential using a combination of ground-based radar observations and severe reports. However, this is often done on a small scale using limited case studies on the order of tens to hundreds of storms due to how time-intensive this process is. Herein, we introduce the GridRad-Severe dataset, a database including ∼100 severe weather days per year and upward of 1.3 million objectively tracked storms from 2010 to 2019. Composite radar volumes spanning objectively determined, report-centered domains are created for each selected day using the GridRad compositing technique, with dates objectively determined using report thresholds defined to capture the highest-end severe weather days from each year, evenly distributed across all severe report types (tornadoes, severe hail, and severe wind). Spatiotemporal domain bounds for each event are objectively determined to encompass both the majority of reports and the time of convection initiation. Severe weather reports are matched to storms that are objectively tracked using the radar data, so the evolution of the storm cells and their severe weather production can be evaluated. Herein, we apply storm mode (single-cell, multicell, or mesoscale convective system storms) and right-moving supercell classification techniques to the dataset, and revisit various questions about severe storms and their bulk characteristics posed and evaluated in past work. Additional applications of this dataset are reviewed for possible future studies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amanda M. Murphy, amanda.murphy@ou.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.7228 MB)
Save
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), https://ejssm.com/ojs/index.php/site/article/view/60.

    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., and H. Brooks, 2019: Tornado fatalities: An environmental perspective. Wea. Forecasting, 34, 19992015, https://doi.org/10.1175/WAF-D-19-0119.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., and T. L. Mote, 1998: A climatology of derecho-producing mesoscale convective systems in the central and eastern United States, 1986–95. Part I: Temporal and spatial distribution. Bull. Amer. Meteor. Soc., 79, 25272540, https://doi.org/10.1175/1520-0477(1998)079<2527:ACODPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), https://ejssm.org/archives/wp-content/uploads/2021/09/vol6-7.pdf.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev., 121, 13541372, https://doi.org/10.1175/1520-0493(1993)121<1354:MOISCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and C. A. Doswell III, 2001: Some aspects of the international climatology of tornadoes by damage classification. Atmos. Res., 56, 191201, https://doi.org/10.1016/S0169-8095(00)00098-3.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and D. J. Stensrud, 2004: Interpreting the climatology of derechos. Wea. Forecasting, 19, 595605, https://doi.org/10.1175/1520-0434(2004)019<0595:ITCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2011: Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 10831102, https://doi.org/10.1175/2010MWR3413.1.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the definition of “derecho.” Bull. Amer. Meteor. Soc., 97, 935949, https://doi.org/10.1175/BAMS-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691688, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeWald, V. L., and T. W. Funk, 2002: WSR-88D reflectivity and velocity trends of a damaging squall line event on 20 April 1996 over south-central Indiana and central Kentucky. 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 6.3, https://ams.confex.com/ams/Sept2000/webprogram/Paper16429.html.

  • Doswell, III, C. A., H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, https://doi.org/10.1016/j.atmosres.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Search Google Scholar
    • Export Citation
  • Fowle, M. A., and P. J. Roebber, 2003: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Wea. Forecasting, 18, 782794, https://doi.org/10.1175/1520-0434(2003)018<0782:SHNPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1990: Downbursts: Meteorological features and wind field characteristics. J. Wind Eng. Ind. Aerodyn., 36, 7586, https://doi.org/10.1016/0167-6105(90)90294-M.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and H. R. Byers, 1977: Spearhead echo and downburst in the crash of an airliner. Mon. Wea. Rev., 105, 129146, https://doi.org/10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1982: Effects of miso- and mesoscale obstructions on PAM winds obtained during project NIMROD. J. Appl. Meteor., 21, 840858, https://doi.org/10.1175/1520-0450(1982)021<0840:EOMAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., 1998: Mesoscale convective systems in the southeast United States during 1994–95: A survey. Wea. Forecasting, 13, 860869, https://doi.org/10.1175/1520-0434(1998)013<0860:MCSITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and H. E. Brooks, 2018: Spatial trends in United States tornado frequency. npj Climate Atmos. Sci., 1, 38, https://doi.org/10.1038/s41612-018-0048-2.

    • Search Google Scholar
    • Export Citation
  • Grassotti, C., R. N. Hoffman, E. R. Vivoni, and D. Entekhabi, 2003: Multiple-timescale intercomparison of two radar products and rain gauge observations over the Arkansas–Red River basin. Wea. Forecasting, 18, 12071229, https://doi.org/10.1175/1520-0434(2003)018<1207:MIOTRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutierrez, R. E., and M. R. Kumjian, 2021: Environmental and radar characteristics of gargantuan hail–producing storms. Mon. Wea. Rev., 149, 25232538, https://doi.org/10.1175/MWR-D-20-0298.1.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1988: Improving the watch/warning program through use of significant event data. Preprints, 15th Conf. on Severe Local Storms, Baltimore, MD, Amer. Meteor. Soc., 165–168.

  • Homeyer, C. R., and K. P. Bowman, 2022: Algorithm description document for version 4.2 of the three-dimensional gridded NEXRAD WSR-88D radar (GridRad) dataset. Tech. Doc. 30 pp., http://gridrad.org/pdf/GridRad-v4.2-Algorithm-Description.pdf.

  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing characteristics of tornadic and nontornadic supercell storms from composite mean analyses of radar observations. Mon. Wea. Rev., 148, 50155040, https://doi.org/10.1175/MWR-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Hurlbut, M. M., and A. E. Cohen, 2014: Environments of northeast U.S. severe thunderstorm events from 1999 to 2009. Wea. Forecasting, 29, 322, https://doi.org/10.1175/WAF-D-12-00042.1.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, https://doi.org/10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klimowski, B. A., M. J. Bunkers, M. R. Hjelmfelt, and J. N. Covert, 2003: Severe convective windstorms over the northern High Plains of the United States. Wea. Forecasting, 18, 502519, https://doi.org/10.1175/1520-0434(2003)18<502:SCWOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and Coauthors, 2017: Observations of severe local storms and tornadoes with the Atmospheric Imaging Radar. Bull. Amer. Meteor. Soc., 98, 915935, https://doi.org/10.1175/BAMS-D-15-00266.1.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeffler, S. D., M. R. Kumjian, M. Jurewicz, and M. M. French, 2020: Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting. Geophys. Res. Lett., 47, e2020GL088242, https://doi.org/10.1029/2020GL088242.

    • Search Google Scholar
    • Export Citation
  • McCarthy, J., J. W. Wilson, and T. T. Fujita, 1982: The joint airport weather studies project. Bull. Amer. Meteor. Soc., 63, 1522, https://doi.org/10.1175/1520-0477(1982)063<0015:TJAWSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, P. W., and T. L. Mote, 2017: Standardizing the definition of a “pulse” thunderstorm. Bull. Amer. Meteor. Soc., 98, 905913, https://doi.org/10.1175/BAMS-D-16-0064.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021: A 23-year severe hail climatology using GridRad MESH observations. Mon. Wea. Rev., 149, 945958, https://doi.org/10.1175/MWR-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2022: NOAA’s storm events database. National Centers for Environmental Information, accessed December 2019 to January 2022, https://www.ncdc.noaa.gov/stormevents/.

  • NOAA/NCEI, 2023: U.S. billion-dollar weather and climate disasters. NOAA/NCEI, accessed 18 January 2023, https://www.ncdc.noaa.gov/billions/.

  • NOAA/NWS/ROC, 1991: NOAA Next Generation Radar (NEXRAD) Level 2 base data. NOAA/National Centers for Environmental Information, accessed December 2019 to January 2022, https://doi.org/10.7289/V5W9574V.

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Grim, and M. Steiner, 2015: Assessment of the High-Resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Wea. Forecasting, 30, 892913, https://doi.org/10.1175/WAF-D-14-00118.1.

    • Search Google Scholar
    • Export Citation
  • Rockwood, A. A., and R. A. Maddox, 1988: Mesoscale and synoptic scale interactions leading to intense convection: The case of 7 June 1982. Wea. Forecasting, 3, 5168, https://doi.org/10.1175/1520-0434(1988)003<0051:MASSIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. Burgess, D. Zrnić, T. Smith, and S. Giangrande, 2002: Polarimetric analysis of a 3 May 1999 tornado. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 14.2, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47348.htm.

  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Sandmæl, T. N., 2017: An evaluation of radar- and satellite-data based products to discriminate between tornadic and non-tornadic storms. M.S. thesis, Dept. of Meteorology, University of Oklahoma, 98 pp., https://hdl.handle.net/11244/52775.

  • Schiesser, H. H., R. A. Houze Jr., and H. Huntrieser, 1995: The mesoscale structure of severe precipitation systems in Switzerland. Mon. Wea. Rev., 123, 20702097, https://doi.org/10.1175/1520-0493(1995)123<2070:TMSOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • School of Meteorology/University of Oklahoma, 2021: GridRad-Severe—Three-dimensional gridded NEXRAD WSR-88D radar data for severe events. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 17 April 2023, https://doi.org/10.5065/2B46-1A97.

  • Schumacher, R. S., and K. L. Rasmussen, 2020: The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ., 1, 300314, https://doi.org/10.1038/s43017-020-0057-7.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Snively, D. V., and W. A. Gallus Jr., 2014: Prediction of convective morphology in near-cloud-permitting WRF Model simulations. Wea. Forecasting, 29, 130149, https://doi.org/10.1175/WAF-D-13-00047.1.

    • Search Google Scholar
    • Export Citation
  • Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm labeling in three dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 11271145, https://doi.org/10.1175/MWR-D-16-0089.1.

    • Search Google Scholar
    • Export Citation
  • Thielen, J. E., and W. A. Gallus Jr., 2019: Influences of horizontal grid spacing and microphysics on WRF forecasts of convective morphology evolution for nocturnal MCSs in weakly forced environments. Wea. Forecasting, 34, 14951517, https://doi.org/10.1175/WAF-D-18-0210.1.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and C. D. Curtis, 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Conf. on Int. Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5B.10, http://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.

  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, https://doi.org/10.1175/WAF-835.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2020: A preliminary polarimetric radar comparison of pretornadic and nontornadic supercell storms. Mon. Wea. Rev., 148, 15671584, https://doi.org/10.1175/MWR-D-19-0296.1.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. T., B. H. Tang, and L. F. Bosart, 2017: Climatology and analysis of high-impact, low predictive skill severe weather events in the Northeast United States. Wea. Forecasting, 32, 19031919, https://doi.org/10.1175/WAF-D-17-0044.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 2001: Convectively driven high wind events. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 255–298, https://doi.org/10.1175/0065-9401-28.50.255.

  • Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803, https://doi.org/10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wendt, N. A., and I. L. Jirak, 2021: An hourly climatology of operational MRMS MESH-diagnosed severe and significant hail with comparisons to Storm Data hail reports. Wea. Forecasting, 36, 645659, https://doi.org/10.1175/WAF-D-20-0158.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. M. Wakimoto, 2001: The discovery of the downburst: T. T. Fujita’s contribution. Bull. Amer. Meteor. Soc., 82, 4962, https://doi.org/10.1175/1520-0477(2001)082<0049:TDOTDT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., J. A. Moore, G. B. Foote, B. Martner, A. R. Rodi, T. Uttal, and J. M. Wilczak, 1988: Convection Initiation and Downburst Experiment (CINDE). Bull. Amer. Meteor. Soc., 69, 13281347, https://doi.org/10.1175/1520-0477(1988)069<1328:CIADE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, and E. N. Rasmussen, 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 17741777, https://doi.org/10.1126/science.272.5269.1774.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 775 775 39
Full Text Views 351 351 17
PDF Downloads 410 410 16