On the Detection of Icing Conditions at Altitude in Conjunction with Mesoscale Convective Complexes Using Balloon Sondes

Chuntao Liu aTexas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Chuntao Liu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6914-0920
,
Laufey Jörgensdóttir bSt. Edward’s University, Austin, Texas

Search for other papers by Laufey Jörgensdóttir in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0317-2022
,
Paul Walter bSt. Edward’s University, Austin, Texas

Search for other papers by Paul Walter in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9567-6465
,
Gary A. Morris bSt. Edward’s University, Austin, Texas
cNOAA/Global Monitoring Laboratory, Boulder, Colorado

Search for other papers by Gary A. Morris in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2196-8454
,
James H. Flynn dUniversity of Houston, Houston, Texas

Search for other papers by James H. Flynn in
Current site
Google Scholar
PubMed
Close
, and
Paul Kucera eUniversity Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Paul Kucera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Balloon-borne radiosondes are launched twice daily at coordinated times worldwide to assist with weather forecasting. Data collection from each flight is usually terminated when the balloon bursts at an altitude above 20 km. This paper highlights cases where the balloon’s turnaround occurs at lower altitudes and is associated with ice formation on the balloon, a weather condition of interest to aviation safety. Four examples of such cases are shown, where the balloon oscillates between 3- and 6-km altitude before rising to high altitudes and bursting. This oscillation is due to the accumulation and melting of ice on the balloon, causing the pattern to repeat multiple times. An analysis of National Weather Service radiosonde data over a 5-yr period and a global dataset from the National Centers for Environmental Information from 1980 to 2020 identified that 0.18% of soundings worldwide satisfied these criteria. This indicates that weather conditions important to aviation safety are not rare in the worldwide database. We recommend that soundings that show descent at altitudes lower than typically expected continue to be tracked, particularly given that these up–down-oscillating soundings can provide valuable information for weather forecasting on days with significant precipitation and icing conditions that might lead to aviation safety concerns.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chuntao Liu, chuntao.liu@tamucc.edu

Abstract

Balloon-borne radiosondes are launched twice daily at coordinated times worldwide to assist with weather forecasting. Data collection from each flight is usually terminated when the balloon bursts at an altitude above 20 km. This paper highlights cases where the balloon’s turnaround occurs at lower altitudes and is associated with ice formation on the balloon, a weather condition of interest to aviation safety. Four examples of such cases are shown, where the balloon oscillates between 3- and 6-km altitude before rising to high altitudes and bursting. This oscillation is due to the accumulation and melting of ice on the balloon, causing the pattern to repeat multiple times. An analysis of National Weather Service radiosonde data over a 5-yr period and a global dataset from the National Centers for Environmental Information from 1980 to 2020 identified that 0.18% of soundings worldwide satisfied these criteria. This indicates that weather conditions important to aviation safety are not rare in the worldwide database. We recommend that soundings that show descent at altitudes lower than typically expected continue to be tracked, particularly given that these up–down-oscillating soundings can provide valuable information for weather forecasting on days with significant precipitation and icing conditions that might lead to aviation safety concerns.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chuntao Liu, chuntao.liu@tamucc.edu
Save
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Dirksen, R. J., M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H. Vömel, 2014: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmos. Meas. Tech., 7, 44634490, https://doi.org/10.5194/amt-7-4463-2014.

    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368, https://doi.org/10.1175/JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., X. Yin, R. S. Vose, S. Applequist, and J. Arnfield, 2018: Enhancing the data coverage in the integrated global radiosonde archive. J. Atmos. Oceanic Technol., 35, 17531770, https://doi.org/10.1175/JTECH-D-17-0223.1.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., 1994: Temporal inhomogeneities in radiosonde temperature records. J. Geophys. Res., 99, 36673676, https://doi.org/10.1029/93JD03179.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2019: A review of high impact weather for aviation meteorology. Pure Appl. Geophys., 176, 18691921, https://doi.org/10.1007/s00024-019-02168-6.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holdridge, D., 2020: Balloon-Borne Sounding System (SONDE) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-029, DOE, 38 pp.

  • Homeyer, C., J. Smith, T. Bui, J. Dean-Day, T. Hanisco, R. Hannun, J. St Clair, and K. Bedka, 2023: A case study of the highest ever altitude of in situ observations of convective hydration of the stratosphere during the DCOTSS field campaign. 2023 EGU General Assembly, Vienna, Austria, European Geosciences Union, Abstract EGU23-9858, https://doi.org/10.5194/egusphere-egu23-9858.

  • Houze, R. A., Jr., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

  • Hurst, D. F., and Coauthors, 2011: Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009. Atmos. Meas. Tech., 4, 27772793, https://doi.org/10.5194/amt-4-2777-2011.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205218, https://doi.org/10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 half hourly 4km global (60S–60N) merged IR V1. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed August 2022, https://doi.org/10.5067/P4HZB9N27EKU.

  • Klugmann, D., K. Heinsohn, and H. Kirzel, 1996: A low cost 24 GHz FM-CW Doppler radar rain profiler. Contrib. Atmos. Phys., 69, 247253.

    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis. Ann. Geophys., 25, 203210.

  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, and T. Leblanc, 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, https://doi.org/10.1029/2008JD011565.

    • Search Google Scholar
    • Export Citation
  • Morris, G. A., A. M. Thompson, K. E. Pickering, S. Chen, E. J. Bucsela, and P. A. Kucera, 2010: Observations of ozone production in a dissipating tropical convective cell during TC4. Atmos. Chem. Phys., 10, 11 18911 208, https://doi.org/10.5194/acp-10-11189-2010.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442(2003)016%3C1456:TDCORA%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramella Pralungo, L., L. Haimberger, A. Stickler, and S. Brönnimann, 2014: A global radiosonde and tracked balloon archive on 16 pressure levels (GRASP) back to 1905—Part 1: Merging and interpolation to 00:00 and 12:00 GMT. Earth Syst. Sci. Data, 6, 185200, https://doi.org/10.5194/essd-6-185-2014.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, https://doi.org/10.1038/35013030.

    • Search Google Scholar
    • Export Citation
  • Schrab, K., and D. B. Caldwell, 2010: National weather service manual 10-1401: Operations and services, upper air program NWSPD 10-14, rawinsonde observations. Tech. Rep. NWSM 10-1401, 208 pp., https://www.nws.noaa.gov/directives/sym/pd01014001curr.pdf.

  • Smit, H. G. J., A. M. Thompson, and ASOPOS Panel, 2021: Ozonesonde measurement principles and best operational practices: ASOPOS 2.0 (Assessment of standard operating procedures for ozone sondes). WMO/GAW Rep. 268, WMO, 173 pp., https://library.wmo.int/doc_num.php?explnum_id=10884.

  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Theisen, C. J., P. A. Kucera, and M. R. Poellot, 2009: A study of relationships between Florida thunderstorm properties and corresponding anvil cloud characteristics. J. Appl. Meteor. Climatol., 48, 18821901, https://doi.org/10.1175/2009JAMC1991.1.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J04, https://doi.org/10.1029/2009JD013073.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., and Coauthors, 2018: Corrigendum: Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett., 13, 019501, https://doi.org/10.1088/1748-9326/aaa343.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112, D08305, https://doi.org/10.1029/2007JD008698.

    • Search Google Scholar
    • Export Citation
  • von Rohden, C., M. Sommer, T. Naebert, V. Motuz, and R. J. Dirksen, 2022: Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41. Atmos. Meas. Tech., 15, 383405, https://doi.org/10.5194/amt-15-383-2022.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and L. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 22182238, https://doi.org/10.1175/2007JCLI1944.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Bian, W. O. Brown, H. Cole, V. Grubišić, and K. Young, 2009: Vertical air motion from T-REX radiosonde and dropsonde data. J. Atmos. Oceanic Technol., 26, 928942, https://doi.org/10.1175/2008JTECHA1240.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, S., and T. J. Schuur, 2018: On the use of radiosondes in freezing precipitation. J. Atmos. Oceanic Technol., 35, 459472, https://doi.org/10.1175/JTECH-D-17-0074.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 579 579 22
Full Text Views 198 198 5
PDF Downloads 198 198 7