Adachi, T., and W. Mashiko, 2020: High temporal-spatial resolution observation of tornadogenesis in a shallow supercell associated with Typhoon Hagibis (2019) using phased array weather radar. Geophys. Res. Lett., 47, e2020GL089635, https://doi.org/10.1029/2020GL089635.
Adachi, T., K. Kusunoki, S. Yoshida, K.-I. Arai, and T. Ushio, 2016: High-speed volumetric observations of a wet microburst using X-band phased array weather radar in Japan. Mon. Wea. Rev., 144, 3749–3765, https://doi.org/10.1175/MWR-D-16-0125.1.
Adams-Selin, R., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 4919–4939, https://doi.org/10.1175/MWR-D-16-0027.1.
Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in physical and computational parameters. Mon. Wea. Rev., 130, 2671–2691, https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.
Adlerman, E. J., and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 3595–3623, https://doi.org/10.1175/MWR3039.1.
Alexander, C. R., 2010: A mobile radar based climatology of supercell tornado structures and dynamics. Ph.D. thesis, University of Oklahoma, 229 pp.
Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 72–97, https://doi.org/10.1175/MWR-2855.1.
Alford, A. A., M. I. Biggerstaff, G. D. Carrie, J. L. Schroeder, B. D. Hirth, and S. M. Waugh, 2019: Near-surface maximum winds during the landfall of Hurricane Harvey. Geophys. Res. Lett., 46, 973–982, https://doi.org/10.1029/2018GL080013.
Alford, A. A., J. A. Zhang, M. I. Biggerstaff, P. Dodge, F. D. Marks, and D. J. Bodine, 2020: Transition of the hurricane boundary layer during the landfall of Hurricane Irene (2011). J. Atmos. Sci., 77, 3509–3531, https://doi.org/10.1175/JAS-D-19-0290.1.
Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. Jurgen Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, 2020: Understanding hail in the Earth system. Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665.
Asai, K., H. Kikuchi, T. Ushio, and Y. Hobara, 2021: Validation of X-band multiparameter phased-array weather radar by comparing data from Doppler weather radar with a parabolic dish antenna. J. Atmos. Oceanic Technol., 38, 1561–1570, https://doi.org/10.1175/JTECH-D-20-0213.1.
Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805–818, https://doi.org/10.1175/2007JAMC1611.1.
Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1.
Biggerstaff, M. I., Z. Zounes, A. A. Alford, G. D. Carrie, J. T. Pilkey, M. A. Uman, and D. M. Jordan, 2017: Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system. Geophys. Res. Lett., 44, 8027–8036, https://doi.org/10.1002/2017GL074610.
Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 1101–1119, https://doi.org/10.1175/WAF-D-16-0203.1.
Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2003a: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis. Mon. Wea. Rev., 131, 2954–2967, https://doi.org/10.1175/1520-0493(2003)131<2954:MDROOA>2.0.CO;2.
Bluestein, H. B., W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003b: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 2968–2984, https://doi.org/10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2.
Bluestein, H. B., M. M. French, I. Popstefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579–600, https://doi.org/10.1175/2009BAMS2914.1.
Bluestein, H. B., J. B. Houser, M. M. French, J. C. Snyder, G. D. Emmitt, I. PopStefanija, C. Baldi, and R. T. Bluth, 2014: Observations of the boundary layer near tornadoes and in supercells using a mobile, collocated, pulsed Doppler lidar and radar. J. Atmos. Oceanic Technol., 31, 302–325, https://doi.org/10.1175/JTECH-D-13-00112.1.
Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525–552, https://doi.org/10.1175/WAF-D-14-00152.1.
Bluestein, H. B., M. M. French, J. C. Snyder, and J. B. Houser, 2016: Doppler radar observations of anticyclonic tornadoes in cyclonically rotating, right-moving supercells. Mon. Wea. Rev., 144, 1591–1616, https://doi.org/10.1175/MWR-D-15-0304.1.
Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2018: The multiple-vortex structure of the El Reno, Oklahoma, tornado on 31 May 2013. Mon. Wea. Rev., 146, 2483–2502, https://doi.org/10.1175/MWR-D-18-0073.1.
Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2019: Tornadogenesis and early tornado evolution in the El Reno, Oklahoma, supercell on 31 May 2013. Mon. Wea. Rev., 147, 2045–2066, https://doi.org/10.1175/MWR-D-18-0338.1.
Bluestein, H. B., F. H. Carr, and S. J. Goodman, 2022: Atmospheric observations of weather and climate. Atmos.–Ocean, 60, 149–187, https://doi.org/10.1080/07055900.2022.2082369.
Bowden, K. A., and P. L. Heinselman, 2016: A qualitative analysis of NWS forecasters’ use of phased-array radar data during severe hail and wind events. Wea. Forecasting, 31, 43–55, https://doi.org/10.1175/WAF-D-15-0089.1.
Bowden, K. A., P. L. Heinselman, D. M. Kingfield, and R. P. Thomas, 2015: Impacts of phased-array radar data on forecaster performance during severe hail and wind events. Wea. Forecasting, 30, 389–404, https://doi.org/10.1175/WAF-D-14-00101.1.
Brooks, H. E., and J. Correia Jr., 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 1501–1511, https://doi.org/10.1175/WAF-D-18-0120.1.
Brothers, M. D., E. C. Bruning, and E. R. Mansell, 2018: Investigating the relative contributions of charge deposition and turbulence in organizing charge within a thunderstorm. J. Atmos. Sci., 75, 3265–3284, https://doi.org/10.1175/JAS-D-18-0007.1.
Brotzge, J., K. Hondl, B. Philips, L. Lemon, E. J. Bass, D. Rude, and D. L. Andra Jr., 2010: Evaluation of distributed collaborative adaptive sensing for detection of low-level circulations and implications for severe weather warning operations. Wea. Forecasting, 25, 173–189, https://doi.org/10.1175/2009WAF2222233.1.
Brown, R. A., W. C. Bumgarner, K. C. Crawford, and D. Sirmans, 1971: Preliminary Doppler velocity measurements in a developing radar hook echo. Bull. Amer. Meteor. Soc., 52, 1186–1188, https://doi.org/10.1175/1520-0477(1971)052<1186:PDVMIA>2.0.CO;2.
Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 29–38, https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.
Brown, R. A., B. A. Flickinger, E. Forren, D. M. Schultz, D. Sirmans, P. L. Spencer, V. T. Wood, and C. L. Ziegler, 2005: Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Wea. Forecasting, 20, 3–14, https://doi.org/10.1175/WAF-832.1.
Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 4012–4029, https://doi.org/10.1175/JAS-D-12-0289.1.
Burgess, D. W., R. J. Donaldson Jr., T. Sieland, J. Hinkelman, D. Sirmans, K. Shreeve, K. Glover, and I. Goldman, 1979: Final report on the Joint Doppler Operational Project (JDOP) 1976–1979. NOAA Tech. Memo. ERL NSSL86, 84 pp.
Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.
Byers, H. R., and R. R. Braham Jr., 1948: Thunderstorm structure and circulation. J. Atmos. Sci., 5, 71–86, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.
Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 2199–2223, https://doi.org/10.1175/MWR-D-12-00258.1.
Capon, J., 1969: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57, 1408–1418, https://doi.org/10.1109/PROC.1969.7278.
Carbone, R. E., M. J. Carpenter, and C. D. Burghart, 1985: Doppler radar sampling limitations in convective storms. J. Atmos. Oceanic Technol., 2, 357–361, https://doi.org/10.1175/1520-0426(1985)002<0357:DRSLIC>2.0.CO;2.
Carlin, J. T., J. Gao, J. C. Snyder, and A. V. Ryzhkov, 2017: Assimilation of ZDR columns for improving the spinup and forecast of convective storms in storm-scale models: Proof-of-concept experiments. Mon. Wea. Rev., 145, 5033–5057, https://doi.org/10.1175/MWR-D-17-0103.1.
Caylor, I. J., and V. Chandrasekar, 1996: Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sens., 34, 847–858, https://doi.org/10.1109/36.508402.
Chandrasekar, V., R. Keranen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97–111, https://doi.org/10.1016/j.atmosres.2011.08.014.
Chase, R. J., D. R. Harrison, A. Burke, G. M. Lackmann, and A. McGovern, 2022: A machine learning tutorial for operational meteorology. Part I: Traditional machine learning. Wea. Forecasting, 37, 1509–1529, https://doi.org/10.1175/WAF-D-22-0070.1.
Chmielewski, V. C., D. R. MacGorman, C. L. Ziegler, E. DiGangi, D. Betten, and M. Biggerstaff, 2020: Microphysical and transportive contributions to normal and anomalous polarity subregions in the 29–30 May 2012 Kingfisher storm. J. Geophys. Res. Atmos., 125, e2020JD032384, https://doi.org/10.1029/2020JD032384.
Cho, J. Y. N., J. M. Kurdzo, B. J. Bennett, M. E. Weber, J. W. Dellicarpini, A. Locanto, and H. Frank, 2022: Impact of WSR-88D intra-volume low-level scans on severe weather warning performance. Wea. Forecasting, 37, 1169–1189, https://doi.org/10.1175/WAF-D-21-0152.1.
Chronis, T., L. D. Carey, C. J. Schultz, E. V. Schultz, K. M. Calhoun, and S. J. Goodman, 2015: Exploring lightning jump characteristics. Wea. Forecasting, 30, 23–37, https://doi.org/10.1175/WAF-D-14-00064.1.
Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149–180, https://doi.org/10.1175/MWR-D-16-0226.1.
Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 4605–4625, https://doi.org/10.1175/MWR-D-17-0152.1.
Coffer, B. E., M. D. Parker, J. M. Peters, and A. R. Wade, 2023: Supercell low-level mesocyclones: Origins of inflow and vorticity. Mon. Wea. Rev., 151, 2205–2232, https://doi.org/10.1175/MWR-D-22-0269.1.
Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 2511–2528, https://doi.org/10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.
Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 4929–4942, https://doi.org/10.1175/MWR-D-15-0115.1.
Dahl, J. M. L., 2021: Centrifugal waves in tornado-like vortices: Kelvin’s solutions and their applications to multiple-vortex development and vortex breakdown. Mon. Wea. Rev., 149, 3173–3216, https://doi.org/10.1175/MWR-D-20-0426.1.
Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 2959–2966, https://doi.org/10.1175/MWR-D-12-00131.1.
Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 3027–3051, https://doi.org/10.1175/JAS-D-13-0123.1.
Dahl, N. A., A. Shapiro, C. K. Potvin, A. Theisen, J. G. Gebauer, A. D. Schenkman, and M. Xue, 2019: High-resolution, rapid-scan dual-Doppler retrievals of vertical velocity in a simulated supercell. J. Atmos. Oceanic Technol., 36, 1477–1500, https://doi.org/10.1175/JTECH-D-18-0211.1.
Dawson, D. T., II, E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276–299, https://doi.org/10.1175/JAS-D-13-0118.1.
Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, https://doi.org/10.1029/2007JD009700.
Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641–663, https://doi.org/10.1175/JAS-D-16-0066.1.
Donaldson, R. J., Jr., 1970: Vortex signature recognition by a Doppler radar. J. Appl. Meteor., 9, 661–670, https://doi.org/10.1175/1520-0450(1970)009<0661:VSRBAD>2.0.CO;2.
Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 592 pp., https://doi.org/10.1016/C2009-0-22358-0.
Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 2626–2648, https://doi.org/10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.
Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 2649–2670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.
Dowell, D. C., and A. Shapiro, 2003: Stability of an iterative dual-Doppler wind synthesis in Cartesian coordinates. J. Atmos. Oceanic Technol., 20, 1552–1559, https://doi.org/10.1175/1520-0426(2003)020<1552:SOAIDW>2.0.CO;2.
Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 1501–1524, https://doi.org/10.1175/MWR2934.1.
Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294, https://doi.org/10.1175/2010MWR3438.1.
Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description. Wea. Forecasting, 37, 1371–1395, https://doi.org/10.1175/WAF-D-21-0151.1.
Emersic, C., P. L. Heinselman, D. R. MacGorman, and E. C. Bruning, 2011: Lightning activity in a hail-producing storm observed with phased-array radar. Mon. Wea. Rev., 139, 1809–1825, https://doi.org/10.1175/2010MWR3574.1.
Eure, K. C., P. D. Mykolajtchuk, Y. Zhang, D. J. Stensrud, F. Zhang, S. J. Greybush, and M. R. Kumjian, 2023: Simultaneous assimilation of planetary boundary layer observations from radar and all-sky satellite observations to improve forecasts of convection initiation. Mon. Wea. Rev., 151, 795–813, https://doi.org/10.1175/MWR-D-22-0188.1.
Fernández-Cabán, P. L., and Coauthors, 2019: Observing Hurricane Harvey’s eyewall at landfall. Bull. Amer. Meteor. Soc., 100, 759–775, https://doi.org/10.1175/BAMS-D-17-0237.1.
Finley, C. A., M. Elmore, L. Orf, and B. D. Lee, 2023: Impact of the streamwise vorticity current on low-level mesocyclone development in a simulated supercell. Geophys. Res. Lett., 50, e2022GL100005, https://doi.org/10.1029/2022GL100005.
Fischer, J., and J. M. L. Dahl, 2022: Transition of near-ground vorticity dynamics during tornadogenesis. J. Atmos. Sci., 79, 467–483, https://doi.org/10.1175/JAS-D-21-0181.1.
French, M. M., and D. M. Kingfield, 2021: Tornado formation and intensity prediction using polarimetric radar estimates of updraft area. Wea. Forecasting, 36, 2211–2231, https://doi.org/10.1175/WAF-D-21-0087.1.
French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 4576–4601, https://doi.org/10.1175/MWR-D-12-00315.1.
French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 1010–1036, https://doi.org/10.1175/MWR-D-13-00101.1.
French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 3025–3043, https://doi.org/10.1175/MWR-D-14-00349.1.
Fridlind, A. M., and Coauthors, 2019: Use of polarimetric radar measurements to constrain simulated convective cell evolution: A pilot study with Lagrangian tracking. Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019.
Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.
Gebauer, J. G., A. Shapiro, C. K. Potvin, N. A. Dahl, M. I. Biggerstaff, and A. A. Alford, 2022: Evaluating vertical velocity retrievals from vertical vorticity equation constrained dual-Doppler analysis of real, rapid-scan radar data. J. Atmos. Oceanic Technol., 39, 1591–1610, https://doi.org/10.1175/JTECH-D-21-0136.1.
Geerts, B., and Coauthors, 2018: Recommendations for in situ and remote sensing capabilities in atmospheric convection and turbulence. Bull. Amer. Meteor. Soc., 99, 2463–2470, https://doi.org/10.1175/BAMS-D-17-0310.1.
Giammanco, I. M., B. R. Maiden, H. E. Estes, and T. M. Brown-Giammanco, 2017: Using 3D laser scanning technology to create digital models of hailstones. Bull. Amer. Meteor. Soc., 98, 1341–1347, https://doi.org/10.1175/BAMS-D-15-00314.1.
Goodman, S. J., and Coauthors, 2005: The North Alabama lightning mapping array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423–437, https://doi.org/10.1016/j.atmosres.2004.11.035.
Griffin, C. B., D. J. Bodine, J. M. Kurdzo, A. Mahre, and R. D. Palmer, 2019: High-temporal resolution observations of the 27 May 2015 Canadian, Texas, tornado using the Atmospheric Imaging Radar. Mon. Wea. Rev., 147, 873–891, https://doi.org/10.1175/MWR-D-18-0297.1.
Guerra, J. E., P. S. Skinner, A. Clark, M. Flora, B. Matilla, K. Knopfmeier, and A. E. Reinhart, 2022: Quantification of NSSL Warn-on-Forecast System accuracy by storm age using object-based verification. Wea. Forecasting, 37, 1973–1983, https://doi.org/10.1175/WAF-D-22-0043.1.
Heinselman, P. L., and S. Torres, 2011: High-temporal-resolution capabilities of the national weather radar testbed phased-array radar. J. Appl. Meteor. Climatol., 50, 579–593, https://doi.org/10.1175/2010JAMC2588.1.
Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the national weather radar testbed phased array radar. Wea. Forecasting, 23, 808–824, https://doi.org/10.1175/2008WAF2007071.1.
Heinselman, P. L., D. S. LaDue, and H. Lazrus, 2012: Exploring impacts of rapid-scan radar data on NWS warning decisions. Wea. Forecasting, 27, 1031–1044, https://doi.org/10.1175/WAF-D-11-00145.1.
Heinselman, P. L., D. S. LaDue, D. M. Kingfield, and R. Hoffman, 2015: Tornado warning decisions using phased-array radar data. Wea. Forecasting, 30, 57–78, https://doi.org/10.1175/WAF-D-14-00042.1.
Hendry, A., and G. C. McCormick, 1976: Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms. J. Geophys. Res., 81, 5353–5357, https://doi.org/10.1029/JC081i030p05353.
Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 2685–2710, https://doi.org/10.1175/MWR-D-14-00253.1.
Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 4101–4130, https://doi.org/10.1175/MWR-D-15-0408.1.
Houser, J. L., H. B. Bluestein, K. Thiem, J. Snyder, D. Reif, and Z. Wienhoff, 2022: Additional evaluation of the spatiotemporal evolution of rotation during tornadogenesis using rapid-scan mobile radar observations. Mon. Wea. Rev., 150, 1639–1666, https://doi.org/10.1175/MWR-D-21-0227.1.
Hu, M., and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507–525, https://doi.org/10.1175/MWR3313.1.
Huang, Y., X. Wang, C. Kerr, A. Mahre, T.-Y. Yu, and D. Bodine, 2020: Impact of assimilating future clear-air radial velocity observations from phased-array radar on a supercell thunderstorm forecast: An observing system simulation experiment study. Mon. Wea. Rev., 148, 3825–3845, https://doi.org/10.1175/MWR-D-19-0391.1.
Isoda, F., S. Satoh, and T. Ushio, 2018: Temporal and spatial characteristics of localized rainfall on 26 July 2012 observed by phased array weather radar. SOLA, 14, 64–68, https://doi.org/10.2151/sola.2018-011.
Isom, B., and Coauthors, 2013: The atmospheric imaging radar: Simultaneous volumetric observations using a phased array weather radar. J. Atmos. Oceanic Technol., 30, 655–675, https://doi.org/10.1175/JTECH-D-12-00063.1.
Jensen, M. P., and Coauthors, 2022: A succession of cloud, precipitation, aerosol, and air quality field experiments in the coastal urban environment. Bull. Amer. Meteor. Soc., 103, 103–105, https://doi.org/10.1175/BAMS-D-21-0104.1.
Jones, T. A., and Coauthors, 2020: Assimilation of GOES-16 radiances and retrievals into the Warn-on-Forecast System. Mon. Wea. Rev., 148, 1829–1859, https://doi.org/10.1175/MWR-D-19-0379.1.
Joseph, E. D., 2023: Airborne Phased Array Radar (APAR): The next generation of airborne polarimetric Doppler weather radar. 40th Conf. on Radar Meteorology, Minneapolis, MN, Amer. Meteor. Soc., 17.2, https://ams.confex.com/ams/40RADAR/meetingapp.cgi/Paper/430065.
Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844–858, https://doi.org/10.1175/2010JAMC2558.1.
Kerr, C. A., and X. Wang, 2020: Ensemble-based targeted observation method applied to radar radial velocity observations on idealized supercell low-level rotation forecasts: A proof of concept. Mon. Wea. Rev., 148, 877–890, https://doi.org/10.1175/MWR-D-19-0197.1.
Kingfield, D. M., and J. G. LaDue, 2015: The relationship between automated low-level velocity calculations from the WSR-88D and maximum tornado intensity determined from damage surveys. Wea. Forecasting, 30, 1125–1139, https://doi.org/10.1175/WAF-D-14-00096.1.
Kingfield, D. M., and M. M. French, 2022: The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011–20. Wea. Forecasting, 37, 283–301, https://doi.org/10.1175/WAF-D-21-0127.1.
Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Appl. Meteor., 22, 1487–1503, https://doi.org/10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.
Kollias, P., D. McLaughlin, S. Frasier, M. Oue, E. Luke, and A. Sneddon, 2018: Advances and applications in low-power phased array X-band weather radars. 2018 IEEE Radar Conf. (RadarConf18), Oklahoma City, OK, Institute of Electrical and Electronics Engineers, 1359–1364, https://doi.org/10.1109/RADAR.2018.8378762.
Kollias, P., E. Luke, M. Oue, and K. Lamer, 2020: Agile adaptive radar sampling of fast-evolving atmospheric phenomena guided by satellite imagery and surface cameras. Geophys. Res. Lett., 47, e2020GL088440, https://doi.org/10.1029/2020GL088440.
Kollias, P., and Coauthors, 2022: Science applications of phased array radars. Bull. Amer. Meteor. Soc., 103, E2370–E2390, https://doi.org/10.1175/BAMS-D-21-0173.1.
Kosiba, K., and J. Wurman, 2013: The three-dimensional structure and evolution of a tornado boundary layer. Wea. Forecasting, 28, 1552–1561, https://doi.org/10.1175/WAF-D-13-00070.1.
Kosiba, K., J. Wurman, F. J. Masters, and P. Robinson, 2013a: Mapping of near-surface winds in Hurricane Rita using finescale radar, anemometer, and land-use data. Mon. Wea. Rev., 141, 4337–4349, https://doi.org/10.1175/MWR-D-12-00350.1.
Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013b: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 1157–1181, https://doi.org/10.1175/MWR-D-12-00056.1.
Krajewski, W. F., G. J. Ciach, and E. Habib, 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48, 151–162, https://doi.org/10.1623/hysj.48.2.151.44694.
Krehbiel, P., T. Chen, S. McCrary, W. Rison, G. Gray, and M. Brook, 1996: The use of dual channel circular-polarization radar observations for remotely sensing storm electrification. Meteor. Atmos. Phys., 59, 65–82, https://doi.org/10.1007/BF01032001.
Kristovich, D. A. R., and Coauthors, 2017: The Ontario winter lake-effect systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315–332, https://doi.org/10.1175/BAMS-D-15-00034.1.
Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119.
Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 1940–1961, https://doi.org/10.1175/2007JAMC1874.1.
Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667–685, https://doi.org/10.1175/2008JAS2815.1.
Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 1247–1267, https://doi.org/10.1175/2010JAMC2243.1.
Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 3762–3786, https://doi.org/10.1175/2010MWR3322.1.
Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 1636–1658, https://doi.org/10.1175/JAMC-D-13-0312.1.
Kumjian, M. R., K. Lombardo, and S. Loeffler, 2021: The evolution of hail production in simulated supercell storms. J. Atmos. Sci., 78, 3417–3440, https://doi.org/10.1175/JAS-D-21-0034.1.
Kumjian, M. R., O. P. Prat, K. J. Reimel, M. van Lier-Walqui, and H. C. Morrison, 2022: Dual-polarization radar fingerprints of precipitation physics: A review. Remote Sens., 14, 3706, https://doi.org/10.3390/rs14153706.
Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 2711–2735, https://doi.org/10.1175/MWR-D-14-00357.1.
Kurdzo, J. M., and Coauthors, 2017: Observations of severe local storms and tornadoes with the Atmospheric Imaging Radar. Bull. Amer. Meteor. Soc., 98, 915–935, https://doi.org/10.1175/BAMS-D-15-00266.1.
Kuster, C. M., P. L. Heinselman, and T. J. Schuur, 2016: Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea. Forecasting, 31, 827–851, https://doi.org/10.1175/WAF-D-15-0081.1.
Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 1173–1188, https://doi.org/10.1175/WAF-D-19-0024.1.
Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.
Leslie, L. M., 1971: The development of concentrated vortices: A numerical study. J. Fluid Mech., 48, 1–21, https://doi.org/10.1017/S0022112071001435.
Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527–544, https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.
Lewellen, W. S., D. C. Lewellen, and R. I. Sykes, 1997: Large-eddy simulation of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581–605, https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.
Ligda, M. G. H., 1950: Lightning detection by radar. Bull. Amer. Meteor. Soc., 31, 279–283, https://doi.org/10.1175/1520-0477-31.8.279.
Liou, Y.-C., H. B. Bluestein, M. M. French, and Z. B. Wienhoff, 2018: Single-Doppler velocity retrieval of the wind field in a tornadic supercell using mobile, phased-array, Doppler radar data. J. Atmos. Oceanic Technol., 35, 1649–1663, https://doi.org/10.1175/JTECH-D-18-0004.1.
Lu, H., and Q. Xu, 2009: Trade-offs between measurement accuracy and resolutions in configuring phased-array radar velocity scans for ensemble-based storm-scale data assimilation. J. Appl. Meteor. Climatol., 48, 1230–1244, https://doi.org/10.1175/2008JAMC2009.1.
MacGorman, D. R., W. D. Rust, P. R. Krehbiel, W. Rison, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 2583–2607, https://doi.org/10.1175/MWR2994.1.
Mahale, V. N., J. A. Brotzge, and H. B. Bluestein, 2012: An analysis of vortices embedded within a quasi-linear convective system using X-band polarimetric radar. Wea. Forecasting, 27, 1520–1537, https://doi.org/10.1175/WAF-D-11-00135.1.
Mahre, A., T.-Y. Yu, R. D. Palmer, and J. M. Kurdzo, 2017: Observations of a cold front at high spatiotemporal resolution using an X-band phased array imaging radar. Atmosphere, 8, 30, https://doi.org/10.3390/atmos8020030.
Mahre, A., J. M. Kurdzo, D. J. Bodine, C. B. Griffin, R. D. Palmer, and T.-Y. Yu, 2018: Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 tornado at high spatiotemporal resolution using the Atmospheric Imaging Radar. Mon. Wea. Rev., 146, 2103–2124, https://doi.org/10.1175/MWR-D-17-0256.1.
Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 1845–1858, https://doi.org/10.1175/2008JTECHA1089.1.
Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12 520–12 526, https://doi.org/10.1029/2019GL084099.
Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852–876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.
Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 4349–4385, https://doi.org/10.1175/JAS-D-16-0150.1.
Markowski, P. M., and Coauthors, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 2887–2915, https://doi.org/10.1175/MWR-D-11-00336.1.
Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 2916–2938, https://doi.org/10.1175/MWR-D-11-00337.1.
Marquis, J. M., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 3–27, https://doi.org/10.1175/MWR-D-11-00025.1.
Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn, 1955: Advances in radar weather. Advances in Geophysics, Vol. 2, Academic Press, 1–56, https://doi.org/10.1016/S0065-2687(08)60310-6.
McCormick, G. C., and A. Hendry, 1975: Principles for the radar determination of the polarization properties of precipitation. Radio Sci., 10, 421–434, https://doi.org/10.1029/RS010i004p00421.
McKeown, K. E., M. M. French, K. S. Tuftedal, D. M. Kingfield, H. B. Bluestein, D. W. Reif, and Z. B. Wienhoff, 2020: Rapid-scan and polarimetric radar observations of the dissipation of a violent tornado on 9 May 2016 near Sulphur, Oklahoma. Mon. Wea. Rev., 148, 3951–3971, https://doi.org/10.1175/MWR-D-20-0033.1.
McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 1797–1818, https://doi.org/10.1175/2009BAMS2507.1.
McMurdie, L. A., and Coauthors, 2022: Chasing snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. Bull. Amer. Meteor. Soc., 103, E1243–E1269, https://doi.org/10.1175/BAMS-D-20-0246.1.
Miller, R. L., C. L. Ziegler, and M. I. Biggerstaff, 2020: Seven-Doppler radar and in situ analysis of the 25–26 June 2015 Kansas MCS during PECAN. Mon. Wea. Rev., 148, 211–240, https://doi.org/10.1175/MWR-D-19-0151.1.
Miyoshi, T., and Coauthors, 2016: “Big data assimilation” revolutionizing severe weather prediction. Bull. Amer. Meteor. Soc., 97, 1347–1354, https://doi.org/10.1175/BAMS-D-15-00144.1.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465, https://doi.org/10.1002/qj.49712353810.
Moroda, Y., K. Tsuboki, S. Satoh, K. Nakagawa, T. Ushio, and S. Shimizu, 2021: Structure and evolution of precipitation cores in an isolated convective storm observed by phased array weather radar. J. Meteor. Soc. Japan, 99, 765–784, https://doi.org/10.2151/jmsj.2021-038.
Moroda, Y., K. Tsuboki, S. Satoh, K. Nakagawa, T. Ushio, and H. Kikuchi, 2022: Lightning bubbles caused by upward reflectivity pulses above precipitation cores of a thundercloud. SOLA, 18, 110–115, https://doi.org/10.2151/sola.2022-018.
Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 2662–2673, https://doi.org/10.1175/JAS3508.1.
Murdzek, S. S., P. M. Markowski, and Y. P. Richardson, 2020: Simultaneous dual-Doppler and mobile mesonet observations of streamwise vorticity currents in three supercells. Mon. Wea. Rev., 148, 4859–4874, https://doi.org/10.1175/MWR-D-20-0239.1.
Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947–970, https://doi.org/10.1175/JAMC-D-18-0247.1.
Nai, F., S. Torres, and R. Palmer, 2013: Adaptive beamforming for weather observations using the Atmospheric Imaging Radar. 2013 IEEE Int. Symp. on Phased Array Systems and Technology, Waltham, MA, Institute of Electrical and Electronics Engineers, 709–713, https://doi.org/10.1109/ARRAY.2013.6731917.
National Academies of Science, Engineering, and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, 716 pp., https://doi.org/10.17226/24938.
National Research Council, 2002: Weather Radar Technology beyond NEXRAD. The National Academies Press, 97 pp., https://doi.org/10.17226/10394.
Newman, J. F., and P. L. Heinselman, 2012: Evolution of a quasi-linear convective system sampled by phased array radar. Mon. Wea. Rev., 140, 3467–3486, https://doi.org/10.1175/MWR-D-12-00003.1.
Nguyen, C. M., and V. Chandrasekar, 2017: Electronic scan strategy for phased array weather radar using a space-time characterization model. J. Atmos. Oceanic Technol., 34, 921–938, https://doi.org/10.1175/JTECH-D-16-0021.1.
Nixon, C. J., and J. T. Allen, 2021: Anticipating deviant tornado motion using a simple hodograph technique. Wea. Forecasting, 36, 219–235, https://doi.org/10.1175/WAF-D-20-0056.1.
NOAA, 2020: Report to Congress—Weather radar follow on plan: Research and risk reduction to inform acquisition decisions. NOAA Tech. Rep., 21 pp., https://www.nssl.noaa.gov/publications/par_reports/RadarFollowOnPlan_ReporttoCongress_2020June_Final.pdf.
Nolan, D. S., 2012: Three-dimensional instabilities in tornado-like vortices with secondary circulations. J. Fluid Mech., 711, 61–100, https://doi.org/10.1017/jfm.2012.369.
NWS, 2015: NOAA/National Weather Service radar functional requirements. NOAA Tech. Rep., 58 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NOAA_Radar_Functional_Requirements_Final_Sept%202015.pdf.
Nystuen, J. A., 1998: Temporal sampling requirements for automatic rain gauges. J. Atmos. Oceanic Technol., 15, 1253–1260, https://doi.org/10.1175/1520-0426(1998)015<1253:TSRFAR>2.0.CO;2.
Orf, L., 2019: A violently tornadic supercell thunderstorm simulation spanning a quarter-trillion grid volumes: Computational challenges, I/O framework, and visualizations of tornadogenesis. Atmosphere, 10, 578, https://doi.org/10.3390/atmos10100578.
Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 45–68, https://doi.org/10.1175/BAMS-D-15-00073.1.
Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530, https://doi.org/10.1175/1520-0477-56.5.527.
Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis. Electron. J. Severe Storms Meteor., 13 (1), https://ejssm.com/ojs/index.php/site/article/view/69.
Ortega, K. L., T. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 1519–1530, https://doi.org/10.1175/2009BAMS2815.1.
Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829–848, https://doi.org/10.1175/JAMC-D-15-0203.1.
Orzel, K. A., and S. J. Frasier, 2018: Weather observation by an electronically scanned dual-polarization phase-tilt radar. IEEE Trans. Geosci. Remote Sens., 56, 2722–2734, https://doi.org/10.1109/TGRS.2017.2782480.
Otsuka, S., and Coauthors, 2016: Precipitation nowcasting with three-dimensional space–time extrapolation of dense and frequent phased-array weather radar observations. Wea. Forecasting, 31, 329–340, https://doi.org/10.1175/WAF-D-15-0063.1.
Oue, M., P. Kollias, A. Shapiro, A. Tatarevic, and T. Matsui, 2019: Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals. Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019.
Palmer, R. D., and Coauthors, 2022: A primer on phased array radar technology for the atmospheric sciences. Bull. Amer. Meteor. Soc., 103, E2391–E2416, https://doi.org/10.1175/BAMS-D-21-0172.1.
Parker, M. D., 2023: How well must surface vorticity be organized for tornadogenesis? J. Atmos. Sci., 80, 1433–1448, https://doi.org/10.1175/JAS-D-22-0195.1.
Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 1398–1413, https://doi.org/10.1175/JTECH-D-12-00166.1.
Potvin, C. K., A. Shapiro, and M. Xue, 2012a: Impact of a vertical vorticity constraint in variational dual-Doppler wind analysis: Tests with real and simulated supercell data. J. Atmos. Oceanic Technol., 29, 32–49, https://doi.org/10.1175/JTECH-D-11-00019.1.
Potvin, C. K., L. J. Wicker, and A. Shapiro, 2012b: Assessing errors in variational dual-Doppler wind syntheses of supercell thunderstorms observed by storm-scale mobile radars. J. Atmos. Oceanic Technol., 29, 1009–1025, https://doi.org/10.1175/JTECH-D-11-00177.1.
Qiu, X., Q. Xu, C. Qiu, K. Nai, and P. Zhang, 2013: Retrieving 3D wind field from phased array radar rapid scans. Adv. Meteor., 2013, 792631, https://doi.org/10.1155/2013/792631.
Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 1607–1625, https://doi.org/10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2.
Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteor., 28, 285–303, https://doi.org/10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2.
Rotunno, R., P. M. Markowski, and G. H. Bryan, 2017: “Near ground” vertical vorticity in supercell thunderstorm models. J. Atmos. Sci., 74, 1757–1766, https://doi.org/10.1175/JAS-D-16-0288.1.
Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 2871–2886, https://doi.org/10.1175/JAMC-D-13-074.1.
Salazar, J. L., and Coauthors, 2019: An ultra-fast scan C-band Polarimetric Atmospheric Imaging Radar (PAIR). 2019 IEEE Int. Symp. on Phased Array System and Technology (PAST), Waltham, MA, Institute of Electrical and Electronics Engineers, 1–5, https://doi.org/10.1109/PAST43306.2019.9021042.
Sandmæl, T. N., and Coauthors, 2023: The tornado probability algorithm: A probablistic machine learning tornadic circulation detection algorithm. Wea. Forecasting, 38, 445–466, https://doi.org/10.1175/WAF-D-22-0123.1.
Satrio, C. N., D. J. Bodine, R. D. Palmer, and C. M. Kuster, 2021: Multi-radar analysis of the 20 May 2013 Moore, Oklahoma supercell through tornadogenesis and intensification. Atmosphere, 12, 313, https://doi.org/10.3390/atmos12030313.
Saunders, C., 2008: Charge separation mechanisms in clouds. Space Sci. Rev., 137, 335–353, https://doi.org/10.1007/s11214-008-9345-0.
Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision-making. Wea. Forecasting, 20, 775–788, https://doi.org/10.1175/WAF881.1.
Schneider, M., D. J. Bodine, B. Cheong, and D. Schvartzman, 2023: Rapid-scan radar observations of two QLCSs during the PERiLS 2023 field campaign. 40th Conf. on Radar Meteorology, Minneapolis, MN, Amer. Meteor. Soc., 102, https://ams.confex.com/ams/40RADAR/meetingapp.cgi/Paper/426268.
Schueth, A., C. Weiss, and J. M. L. Dahl, 2021: Comparing observations and simulations of the streamwise vorticity current and the forward-flank convergence boundary in a supercell storm. Mon. Wea. Rev., 149, 1651–1671, https://doi.org/10.1175/MWR-D-20-0251.1.
Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 2543–2563, https://doi.org/10.1175/2009JAMC2237.1.
Schultz, C. J., L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2015: Insight into the kinematic and microphysical processes that control lightning jumps. Wea. Forecasting, 30, 1591–1621, https://doi.org/10.1175/WAF-D-14-00147.1.
Seimon, A., J. T. Allen, T. A. Seimon, S. J. Talbot, and D. K. Hoadley, 2016: Crowdsourcing the El Reno 2013 tornado: A new approach for collation and display of storm chaser imagery for scientific applications. Bull. Amer. Meteor. Soc., 97, 2069–2084, https://doi.org/10.1175/BAMS-D-15-00174.1.
Shapiro, A., P. Robinson, J. Wurman, and J. Gao, 2003: Single-Doppler velocity retrieval with rapid-scan radar data. J. Atmos. Oceanic Technol., 20, 1758–1775, https://doi.org/10.1175/1520-0426(2003)020<1758:SVRWRR>2.0.CO;2.
Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 2089–2106, https://doi.org/10.1175/2009JTECHA1256.1.
Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010a: Spatially variable advection correction of radar data. Part I: Theoretical considerations. J. Atmos. Sci., 67, 3445–3456, https://doi.org/10.1175/2010JAS3465.1.
Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010b: Spatially variable advection correction of radar data. Part II: Test results. J. Atmos. Sci., 67, 3457–3470, https://doi.org/10.1175/2010JAS3466.1.
Skolnik, M. I., 2001: Introduction to Radar Systems. 3rd ed. McGraw-Hill, 772 pp.
Smith, R. K., and L. M. Leslie, 1979: A numerical study of tornadogenesis in rotating thunderstorm. Quart. J. Roy. Meteor. Soc., 105, 107–127, https://doi.org/10.1002/qj.49710544308.
Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799–827, https://doi.org/10.1175/WAF-D-14-00026.1.
Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 1861–1870, https://doi.org/10.1175/JAMC-D-15-0138.1.
Soderholm, J. S., M. R. Kumjian, N. McCarthy, P. Maldonado, and M. Wang, 2020: Quantifying hail size distributions from the sky—Application of drone aerial photogrammetry. Atmos. Meas. Tech., 13, 747–754, https://doi.org/10.5194/amt-13-747-2020.
Souza, J. C. S., and E. C. Bruning, 2021: Assessment of turbulent intensity in different spots of lightning flash propagation. Geophys. Res. Lett., 48, e2021GL095923, https://doi.org/10.1029/2021GL095923.
Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 1752–1774, https://doi.org/10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.
Stensrud, D. J., and J. Gao, 2010: Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts. Mon. Wea. Rev., 138, 1250–1272, https://doi.org/10.1175/2009MWR3027.1.
Stensrud, D. J., and Coauthors, 2013: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 2–16, https://doi.org/10.1016/j.atmosres.2012.04.004.
Stough, S. M., L. D. Carey, C. J. Schultz, and D. J. Cecil, 2022: Supercell thunderstorm charge structure variability and influences on spatial lightning flash relationships with the updraft. Mon. Wea. Rev., 150, 843–861, https://doi.org/10.1175/MWR-D-21-0071.1.
Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 1341–1372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.
Stratman, D. R., N. Yussouf, Y. Jung, T. A. Supinie, M. Xue, P. S. Skinner, and B. J. Putnam, 2020: Optimal temporal frequency of NSSL phased array radar observation for an experimental Warn-on-Forecast System. Wea. Forecasting, 35, 193–214, https://doi.org/10.1175/WAF-D-19-0165.1.
Stuart, N. A., and Coauthors, 2022: The evolving role of humans in weather prediction and communication. Bull. Amer. Meteor. Soc., 103, E1720–E1746, https://doi.org/10.1175/BAMS-D-20-0326.1.
Sun, J., 2005: Convective-scale assimilation of radar data: Progress and challenges. Quart. J. Roy. Meteor. Soc., 131, 3439–3463, https://doi.org/10.1256/qj.05.149.
Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409–426, https://doi.org/10.1175/BAMS-D-11-00263.1.
Supinie, T. A., N. Yussouf, Y. Jung, M. Xue, J. Cheng, and S. Wang, 2017: Comparison of the analyses and forecasts of a tornadic supercell storm from assimilating phased-array radar and WSR-88D observations. Wea. Forecasting, 32, 1379–1401, https://doi.org/10.1175/WAF-D-16-0159.1.
Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.
Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31, 19–42, https://doi.org/10.1175/WAF-D-15-0111.1.
Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 2103–2125, https://doi.org/10.1175/MWR-D-11-00142.1.
Tanamachi, R. L., H. B. Bluestein, M. Xue, W.-C. Lee, K. A. Orzel, S. J. Frasier, and R. M. Wakimoto, 2013: Near-surface vortex structure in a tornado and in a sub-tornado-strength convective-storm vortex 1934 observed by a mobile, W-band radar during VORTEX2. Mon. Wea. Rev., 141, 3661–3690, https://doi.org/10.1175/MWR-D-12-00331.1.
Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501–524, https://doi.org/10.1175/WAF-D-14-00164.1.
Torres, S., and D. Wasiewlewski, 2022: The advanced technology demonstrator at the National Severe Storms Laboratory: Challenges and successes. 2022 IEEE Radar Conf. (RadarConf22), New York, NY, Institute of Electrical and Electronics Engineers, 1–6, https://doi.org/10.1109/RadarConf2248738.2022.9764231.
Toth, M., R. J. Trapp, J. Wurman, and K. A. Kosiba, 2013: Comparison of mobile-radar measurements of tornado intensity with corresponding WSR-88D measurements. Wea. Forecasting, 28, 418–426, https://doi.org/10.1175/WAF-D-12-00019.1.
Trapp, R. J., and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54, 113–133, https://doi.org/10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2.
Trapp, R. J., and C. A. Doswell III, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105–120, https://doi.org/10.1175/1520-0426(2000)017<0105:RDOA>2.0.CO;2.
Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. W. Effertz, A. I. Watson, D. L. Andra Jr., and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea. Forecasting, 14, 625–639, https://doi.org/10.1175/1520-0434(1999)014<0625:DANTVS>2.0.CO;2.
Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.
Vivekanandan, J., W.-C. Lee, E. Loew, J. L. Salazar, V. Grubisic, J. Moore, and P. Tsai, 2014: The next generation airborne polarimetric Doppler weather radar. Geosci. Instrum. Methods Data Syst., 3, 111–126, https://doi.org/10.5194/gi-3-111-2014.
Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 1521–1539, https://doi.org/10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.
Wakimoto, R. M., and B. E. Martner, 1992: Observations of a Colorado tornado. Part II: Combined photogrammetric and Doppler radar analysis. Mon. Wea. Rev., 120, 522–543, https://doi.org/10.1175/1520-0493(1992)120<0522:OOACTP>2.0.CO;2.
Wakimoto, R. M., and R. Srivastava, Eds., 2003: Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Meteor. Monogr., No. 52, Amer. Meteor. Soc., 270 pp.
Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 1749–1776, https://doi.org/10.1175/MWR-D-15-0367.1.
Wang, S., M. Xue, and J. Min, 2013: A four-dimensional asynchronous ensemble square-root filter (4DEnSRF) algorithm and tests with simulated radar data. Quart. J. Roy. Meteor. Soc., 139, 805–819, https://doi.org/10.1002/qj.1987.
Wang, S., Y. Wada, S. Hayashi, T. Ushio, and V. Chandrasekar, 2023: Signatures of vertical ice particles orientation before IC lightning flash initiation observed by X-band dual polarized phased array weather radar. 40th Conf. on Radar Meteorology, Minneapolis, MN, Amer. Meteor. Soc., 10A.3, https://ams.confex.com/ams/40RADAR/meetingapp.cgi/Paper/426139.
Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29, 1194–1204, https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.
Weber, M., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 1739–1752, https://doi.org/10.1175/BAMS-88-11-1739.
Weber, M., and Coauthors, 2021: Toward the next generation operational meteorological radar. Bull. Amer. Meteor. Soc., 102, E1357–E1383, https://doi.org/10.1175/BAMS-D-20-0067.1.
Weinheimer, A. J., and A. A. Few, 1987: The electric field alignment of ice particles in thunder-storms. J. Geophys. Res., 92, 14 833–14 844, https://doi.org/10.1029/JD092iD12p14833.
Weiss, C. C., 2009: The TTUKa mobile Doppler radar: Coordinated radar and in situ measurements of supercell thunderstorms during project VORTEX2. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 11B.2, https://ams.confex.com/ams/34Radar/techprogram/paper_155425.htm.
Weiss, C. C., D. C. Dowell, J. L. Schroder, P. S. Skinner, A. E. Reinhart,