Shear-Relative Asymmetric Kinematic Characteristics of Intensifying Hurricanes as Observed by Airborne Doppler Radar

Udai Shimada aMeteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Udai Shimada in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6971-2693
,
Paul D. Reasor bNOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Paul D. Reasor in
Current site
Google Scholar
PubMed
Close
,
Robert F. Rogers bNOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Robert F. Rogers in
Current site
Google Scholar
PubMed
Close
,
Michael S. Fischer bNOAA/AOML/Hurricane Research Division, Miami, Florida
cUniversity of Miami/Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida

Search for other papers by Michael S. Fischer in
Current site
Google Scholar
PubMed
Close
,
Frank D. Marks bNOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Frank D. Marks in
Current site
Google Scholar
PubMed
Close
,
Jonathan A. Zawislak bNOAA/AOML/Hurricane Research Division, Miami, Florida
cUniversity of Miami/Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida

Search for other papers by Jonathan A. Zawislak in
Current site
Google Scholar
PubMed
Close
, and
Jun A. Zhang bNOAA/AOML/Hurricane Research Division, Miami, Florida
cUniversity of Miami/Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While recent observational studies of intensifying (IN) versus steady-state (SS) hurricanes have noted several differences in their axisymmetric and asymmetric structures, there remain gaps in the characterization of these differences in a fully three-dimensional framework. To address these limitations, this study investigates differences in the shear-relative asymmetric structure between IN and SS hurricanes using airborne Doppler radar data from a dataset covering an extended period of time. Statistics from individual cases show that IN cases are characterized by peak wavenumber-1 ascent concentrated in the upshear-left (USL) quadrant at ∼12-km height, consistent with previous studies. Moderate updrafts (2–6 m s−1) occur more frequently in the downshear eyewall for IN cases than for SS cases, likely leading to a higher frequency of moderate to strong updrafts USL above 9-km height. Composites of IN cases show that low-level outflow from the eye region associated with maximum wavenumber-1 vorticity inside the radius of maximum wind (RMW) in the downshear-left quadrant converges with low-level inflow outside the RMW, forming a stronger local secondary circulation in the downshear eyewall than SS cases. The vigorous eyewall convection of IN cases produces a net vertical mass flux increasing with height up to ∼5 km and then is almost constant up to 10 km, whereas the net vertical mass flux of SS cases decreases with height above 4 km. Strong USL upper-level ascent provides greater potential for the vertical development of the hurricane vortex, which is argued to be favorable for continued intensification in shear environments.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Udai Shimada, ushimada@mri-jma.go.jp

Abstract

While recent observational studies of intensifying (IN) versus steady-state (SS) hurricanes have noted several differences in their axisymmetric and asymmetric structures, there remain gaps in the characterization of these differences in a fully three-dimensional framework. To address these limitations, this study investigates differences in the shear-relative asymmetric structure between IN and SS hurricanes using airborne Doppler radar data from a dataset covering an extended period of time. Statistics from individual cases show that IN cases are characterized by peak wavenumber-1 ascent concentrated in the upshear-left (USL) quadrant at ∼12-km height, consistent with previous studies. Moderate updrafts (2–6 m s−1) occur more frequently in the downshear eyewall for IN cases than for SS cases, likely leading to a higher frequency of moderate to strong updrafts USL above 9-km height. Composites of IN cases show that low-level outflow from the eye region associated with maximum wavenumber-1 vorticity inside the radius of maximum wind (RMW) in the downshear-left quadrant converges with low-level inflow outside the RMW, forming a stronger local secondary circulation in the downshear eyewall than SS cases. The vigorous eyewall convection of IN cases produces a net vertical mass flux increasing with height up to ∼5 km and then is almost constant up to 10 km, whereas the net vertical mass flux of SS cases decreases with height above 4 km. Strong USL upper-level ascent provides greater potential for the vertical development of the hurricane vortex, which is argued to be favorable for continued intensification in shear environments.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Udai Shimada, ushimada@mri-jma.go.jp

Supplementary Materials

    • Supplemental Materials (PDF 0.5494 MB)
Save
  • Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part II: Radial ventilation. J. Atmos. Sci., 78, 783796, https://doi.org/10.1175/JAS-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • Amrhein, V., S. Greenland, and B. McShane, 2019: Scientists rise up against statistical significance. Nature, 567, 305307, https://doi.org/10.1038/d41586-019-00857-9.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724, https://doi.org/10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, and D. Wroe, 2019: Tropical cyclone report: Hurricane Lane (15–28 August 2018). NHC Tech. Rep. EP142018, 28 pp., https://www.nhc.noaa.gov/data/tcr/EP142018_Lane.pdf.

  • Bister, M., and K. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, https://doi.org/10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, https://doi.org/10.1175/MWR3336.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942, https://doi.org/10.1175/JAS3598.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., A. S. Latto, and R. Berg, 2018: Tropical cyclone report: Hurricane Irma (30 August–12 September 2017). NHC Tech. Rep. AL112017, 111 pp., https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., J.-F. Gu, J. A. Zhang, F. D. Marks, R. F. Rogers, and J. J. Cione, 2021: Boundary layer recovery and precipitation symmetrization preceding rapid intensification of tropical cyclones under shear. J. Atmos. Sci., 78, 15231544, https://doi.org/10.1175/JAS-D-20-0252.1.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, https://doi.org/10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • DesRosiers, A. J., M. M. Bell, P. J. Klotzbach, M. S. Fischer, and P. D. Reasor, 2023: Observed relationships between tropical cyclone vortex height, intensity, and intensification rate. Geophys. Res. Lett., 50, e2022GL101877, https://doi.org/10.1029/2022GL101877.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 18911911, https://doi.org/10.1175/JAS-D-12-0245.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., G. M. Heymsfield, P. D. Reasor, and S. R. Guimond, 2017: Concentric eyewall asymmetries in Hurricane Gonzalo (2014) observed by airborne radar. Mon. Wea. Rev., 145, 729749, https://doi.org/10.1175/MWR-D-16-0175.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, https://doi.org/10.1175/MWR-2849.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., P. D. Reasor, R. F. Rogers, and J. F. Gamache, 2022: An analysis of tropical cyclone vortex and convective characteristics in relation to storm intensity using a novel airborne Doppler radar database. Mon. Wea. Rev., 150, 22552278, https://doi.org/10.1175/MWR-D-21-0223.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., P. D. Reasor, B. H. Tang, K. L. Corbosiero, R. D. Torn, and X. Chen, 2023: A tale of two vortex evolutions: Using a high-resolution ensemble to assess the impacts of ventilation on a tropical cyclone rapid intensification event. Mon. Wea. Rev., 151, 297320, https://doi.org/10.1175/MWR-D-22-0037.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, https://doi.org/10.1175/JAS-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, P. D. Reasor, and A. C. Didlake Jr., 2016: The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. J. Atmos. Sci., 73, 36173639, https://doi.org/10.1175/JAS-D-16-0026.1.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shear-relative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883903, https://doi.org/10.1175/MWR-D-14-00122.1.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017a: Analyzing simulated convective bursts in two Atlantic hurricanes. Part I: Burst formation and development. Mon. Wea. Rev., 145, 30733094, https://doi.org/10.1175/MWR-D-16-0267.1.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017b: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, https://doi.org/10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze Jr., 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 16371652, https://doi.org/10.1175/2011JAS3578.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., S. A. Braun, J. L. Vigh, and J. B. Courtney, 2019: A summary of research advances in tropical cyclone intensity change from 2014–2018. Trop. Cyclone Res. Rev., 8, 219225, https://doi.org/10.1016/j.tcrr.2020.01.002.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar (EDOP) investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330, https://doi.org/10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2016: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? J. Atmos. Sci., 73, 487503, https://doi.org/10.1175/JAS-D-15-0157.1.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks Jr., and S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, https://doi.org/10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., D. Atlas, and P. T. Wills, 1993: Probability-matched reflectivity-rainfall relations for a hurricane from aircraft observations. J. Appl. Meteor., 32, 11341141, https://doi.org/10.1175/1520-0450(1993)032<1134:PMRRRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, https://doi.org/10.1002/qj.2283.

    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., R. K. Taft, J. L. Vigh, B. D. McNoldy, and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst., 4, M08001, https://doi.org/10.1029/2011MS000104.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, https://doi.org/10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, https://doi.org/10.5194/acp-11-9395-2011.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, J. A. Zawislak, and L. T. Nguyen, 2020: Precipitation processes and vortex alignment during the intensification of a weak tropical cyclone in moderate vertical shear. Mon. Wea. Rev., 148, 18991929, https://doi.org/10.1175/MWR-D-19-0315.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, https://doi.org/10.1175/JAS-D-11-0326.1.

    • Search Google Scholar
    • Export Citation
  • Shimada, U., 2022: Variability of environmental conditions for tropical cyclone rapid intensification in the western North Pacific. J. Climate, 35, 44374454, https://doi.org/10.1175/JCLI-D-21-0751.1.

    • Search Google Scholar
    • Export Citation
  • SHIPS, 2020: Statistical tropical cyclone intensity forecast technique development: SHIPS developmental data. RAMMB, accessed 30 April 2020, https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/.

  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and S. Wang, 2018: Axisymmetric balance dynamics of tropical cyclone intensification: Diabatic heating versus surface friction. Quart. J. Roy. Meteor. Soc., 144, 23502357, https://doi.org/10.1002/qj.3389.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., G. Kilroy, and M. T. Montgomery, 2021: Tropical cyclone life cycle in a three-dimensional numerical simulation. Quart. J. Roy. Meteor. Soc., 147, 33733393, https://doi.org/10.1002/qj.4133.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2004: Tropical cyclone report: Hurricane Ivan, 2–24 September 2004. NHC Tech. Rep., 44 pp., https://www.nhc.noaa.gov/data/tcr/AL092004_Ivan.pdf.

  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation-convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, https://doi.org/10.1175/JCLI-D-14-00448.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, https://doi.org/10.1175/MWR-D-11-00108.1.

    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., R. F. Rogers, and P. D. Reasor, 2018: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761780, https://doi.org/10.1175/MWR-D-17-0213.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points.” How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, https://doi.org/10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527, https://doi.org/10.1175/MWR-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Search Google Scholar
    • Export Citation
  • Zelinsky, D. A., 2019: Tropical cyclone report: Hurricane Lorenzo (23 September–2 October 2019). NHC Tech. Rep. AL132019, 22 pp., https://www.nhc.noaa.gov/data/tcr/AL132019_Lorenzo.pdf.

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 37723788, https://doi.org/10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Paul, and J. Gamache, 2023: The mean kinematic structure of the tropical cyclone boundary layer and its relationship to intensity change. Mon. Wea. Rev., 151, 6384, https://doi.org/10.1175/MWR-D-21-0335.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988, https://doi.org/10.1175/2011JAS3575.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1199 1080 517
Full Text Views 246 213 11
PDF Downloads 267 225 9