On CCN Effects upon Convective Cold Pool Timing and Features

Tobias I. D. Ross aUniversity of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Tobias I. D. Ross in
Current site
Google Scholar
PubMed
Close
and
Sonia Lasher-Trapp aUniversity of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Sonia Lasher-Trapp in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5816-1363
Restricted access

Abstract

Cold pools produced by deep convection can initiate new convection, and their representation in larger-scale weather and climate models could improve prediction of the extent and timing of upscale growth. Cold pools originate from latent cooling from precipitation changing phase, but little attention has been paid to microphysical influences on cold pool characteristics, particularly CCN effects. Datasets obtained from the CACTI and RELAMPAGO field campaigns, along with idealized numerical modeling, are utilized to investigate the hypothesis that convective storms forming in higher-CCN environments generate their first surface rainfall later, delaying cold pool initiation. Aircraft observations of CCN and shallow convection on 9 days do suggest a CCN effect. Those ingesting more CCN contained fewer drizzle drops, although a decreased cloud depth with increasing CCN was also likely a limiting factor. In three of those cases that later developed into deep convection, the timing of cold pool onset was not ubiquitously delayed in environments with more CCN. Idealized numerical simulations suggest that an ordinary thunderstorm can experience small delays in cold pool onset with increasing CCN due to changes in graupel production, but CCN effects on the cold pool from a supercell thunderstorm can be easily overpowered by its unique dynamics. A strong inverse relationship between cold pool strength, expansion rate, and depth with increasing CCN is suggested by the results of the ordinary thunderstorm simulation. Further consideration of CCN appears warranted for future cold pool parameterization development, but other environmental factors affecting storm morphology and precipitation cannot be ignored.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the RELAMPAGO-CACTI Special Collection.

Corresponding author: Sonia Lasher-Trapp, slasher@illinois.edu

Abstract

Cold pools produced by deep convection can initiate new convection, and their representation in larger-scale weather and climate models could improve prediction of the extent and timing of upscale growth. Cold pools originate from latent cooling from precipitation changing phase, but little attention has been paid to microphysical influences on cold pool characteristics, particularly CCN effects. Datasets obtained from the CACTI and RELAMPAGO field campaigns, along with idealized numerical modeling, are utilized to investigate the hypothesis that convective storms forming in higher-CCN environments generate their first surface rainfall later, delaying cold pool initiation. Aircraft observations of CCN and shallow convection on 9 days do suggest a CCN effect. Those ingesting more CCN contained fewer drizzle drops, although a decreased cloud depth with increasing CCN was also likely a limiting factor. In three of those cases that later developed into deep convection, the timing of cold pool onset was not ubiquitously delayed in environments with more CCN. Idealized numerical simulations suggest that an ordinary thunderstorm can experience small delays in cold pool onset with increasing CCN due to changes in graupel production, but CCN effects on the cold pool from a supercell thunderstorm can be easily overpowered by its unique dynamics. A strong inverse relationship between cold pool strength, expansion rate, and depth with increasing CCN is suggested by the results of the ordinary thunderstorm simulation. Further consideration of CCN appears warranted for future cold pool parameterization development, but other environmental factors affecting storm morphology and precipitation cannot be ignored.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the RELAMPAGO-CACTI Special Collection.

Corresponding author: Sonia Lasher-Trapp, slasher@illinois.edu
Save
  • Alpert, L., 1955: Notes on warm-cloud rainfall. Bull. Amer. Meteor. Soc., 36, 6468, https://doi.org/10.1175/1520-0477-36.2.64.

  • Arias, I., V. Chandrasekar, and S. S. Joshil, 2019: Cross-validation of CSU-CHIVO radar and GPM during RELAMPGO. 2019 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2019), Yokohama, Japan, IEEE Geoscience and Remote Sensing Society/IGARSS 2019 Organizing Committee, 75867589.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, https://doi.org/10.1002/qj.49707934207.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, https://doi.org/10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Borque, P., S. W. Nesbitt, R. J. Trapp, S. Lasher-Trapp, and M. Oue, 2020: Observational study of the thermodynamics and morphological characteristics of a midlatitude continental cold pool event. Mon. Wea. Rev., 148, 719737, https://doi.org/10.1175/MWR-D-19-0068.1.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., 1964: What is the role of ice in summer rain-showers? J. Atmos. Sci., 21, 640645, https://doi.org/10.1175/1520-0469(1964)021<0640:WITROI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., Jr., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci., 55, 34173432, https://doi.org/10.1175/1520-0469(1998)055<3417:EADINS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chisnell, R. F., and J. Latham, 1976: Ice particle multiplication in cumulus clouds. Quart. J. Roy. Meteor. Soc., 102, 133156, https://doi.org/10.1002/qj.49710243111.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from rapid update cycle analyses. Mon. Wea. Rev., 138, 35143539, https://doi.org/10.1175/2010MWR3233.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Appl. Meteor. Climatol., 25, 16581680, https://doi.org/10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. Wu, A. B. Wolf, Y. Chen, M.-S. Yao, and D. Kim, 2015: Constraints on cumulus parameterization from simulations of observed MJO events. J. Climate, 28, 64196442, https://doi.org/10.1175/JCLI-D-14-00832.1.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part II: Variations in vertical wind shear. J. Atmos. Sci., 42, 24042414, https://doi.org/10.1175/1520-0469(1985)042<2404:TDNMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The shuttle radar topography mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897, https://doi.org/10.1175/2009JAS3044.1.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: Modulation by dry layers. J. Atmos. Sci., 72, 13981408, https://doi.org/10.1175/JAS-D-14-0260.1.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and S. S. Yum, 2001: Maritime-Continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58, 915926, https://doi.org/10.1175/1520-0469(2001)058<0915:MCDCIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., K. Friedrich, H. Morrison, and G. H. Bryan, 2014: Aerosol effects on idealized supercell thunderstorms in different environments. J. Atmos. Sci., 71, 45584580, https://doi.org/10.1175/JAS-D-14-0037.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, https://doi.org/10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 (4), https://doi.org/10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, https://doi.org/10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., S. Kumar, D. H. Moser, A. M. Blyth, J. R. French, R. C. Jackson, D. C. Leon, and D. M. Plummer, 2018: On different microphysical pathways to convective rainfall. J. Appl. Meteor. Climatol., 57, 23992417, https://doi.org/10.1175/JAMC-D-18-0041.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, P. R., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2014: Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Wea. Rev., 142, 9911009, https://doi.org/10.1175/MWR-D-13-00156.1.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., and W. R. Cotton, 2014: Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics. Atmos. Res., 147–148, 183204, https://doi.org/10.1016/j.atmosres.2014.04.017.

    • Search Google Scholar
    • Export Citation
  • Mallinson, H. M., and S. G. Lasher-Trapp, 2019: An investigation of hydrometeor latent cooling upon convective cold pool formation, sustainment, and properties. Mon. Wea. Rev., 147, 32053222, https://doi.org/10.1175/MWR-D-18-0382.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, https://doi.org/10.1175/JAS-D-12-0264.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Coauthors, 2021: A storm safari in subtropical South America: Proyecto RELAMPAGO. Bull. Amer. Meteor. Soc., 102, E1621E1644, https://doi.org/10.1175/BAMS-D-20-0029.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., 2014: A Unified Convection Scheme (UNICON). Part I: Formulation. J. Atmos. Sci., 71, 39023930, https://doi.org/10.1175/JAS-D-13-0233.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. M. Blyth, P. R. A. Brown, T. W. Choularton, and J. Latham, 2001: The glaciation of a cumulus cloud over New Mexico. Quart. J. Roy. Meteor. Soc., 127, 15131534, https://doi.org/10.1002/qj.49712757503.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, https://doi.org/10.1029/2008GL036779.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, https://doi.org/10.1080/027868290913988.

    • Search Google Scholar
    • Export Citation
  • Rooney, G. G., A. J. Stirling, R. A. Stratton, and M. Whitall, 2022: C-POOL: A scheme for modelling convective cold pools in the Met Office unified model. Quart. J. Roy. Meteor. Soc., 148, 962980, https://doi.org/10.1002/qj.4241.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782, https://doi.org/10.1007/s00703-005-0113-3.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758765, https://doi.org/10.1002/qj.49709540609.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952a: The growth of cloud drops by condensation. I. General characteristics. Aust. J. Sci. Res., 5, 5986, https://doi.org/10.1071/CH9520059.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952b: The growth of cloud drops by condensation. II. The formation of large cloud drops. Aust. J. Sci. Res, 5, 473499, https://doi.org/10.1071/CH9520473.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958a: The microstructure and colloidal stability of warm clouds. Part I. The relation between structure and stability. Tellus, 10A, 256261.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958b: The microstructure and colloidal stability of warm clouds. Part II. The causes of the variations in microstructure. Tellus, 10A, 262271.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, https://doi.org/10.1175/2010JAS3363.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and J. M. Woznicki, 2017: Convectively induced stabilizations and subsequent recovery with supercell thunderstorms during the Mesoscale Predictability Experiment (MPEX). Mon. Wea. Rev., 145, 17391754, https://doi.org/10.1175/MWR-D-16-0266.1.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geophys. Pure Appl., 43, 243249, https://doi.org/10.1007/BF01993560.

    • Search Google Scholar
    • Export Citation
  • Varble, A., 2018: Erroneous attribution of deep convective invigoration to aerosol concentration. J. Atmos. Sci., 75, 13511368, https://doi.org/10.1175/JAS-D-17-0217.1.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2021: Utilizing a storm-generating hotspot to study convective cloud transitions: The CACTI experiment. Bull. Amer. Meteor. Soc., 102, E1597E1620, https://doi.org/10.1175/BAMS-D-20-0030.1.

    • Search Google Scholar
    • Export Citation
  • Veals, P. G., A. C. Varble, J. O. H. Russell, J. C. Hardin, and E. J. Zipser, 2022: Indications of a decrease in the depth of deep convective cores with increasing aerosol concentration during the CACTI campaign. J. Atmos. Sci., 79, 705722, https://doi.org/10.1175/JAS-D-21-0119.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part 1: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 539 539 154
Full Text Views 194 194 18
PDF Downloads 223 223 22