Interannual Lightning Variability within the TRMM LIS Dataset Using an ENSO Perspective

Austin G. Clark aUniversity of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Austin G. Clark in
Current site
Google Scholar
PubMed
Close
and
Daniel J. Cecil bNASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Daniel J. Cecil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) was used to investigate interannual variability of lightning from 1998 to 2014 within the 38°S–38°N range. Previous studies have indicated that the El Niño–Southern Oscillation (ENSO) phenomenon is one significant contributor to interannual lightning variability, potentially the dominant mechanism on the global scale. This period of 16 years contained four warm- (El Niño), eight cold- (La Niña), and four neutral-phase ENSO years based on the oceanic Niño index. Large magnitude lightning anomalies were found during the warm phase of ENSO, with mean warm-phase anomalies of >10 flashes (1000 km)−2 min−1 in north-central Africa and Argentina. This includes a +35 flashes (1000 km)−2 min−1 anomaly in Argentina during the 2009 El Niño. In general, large-scale anomalies of thermodynamic properties and upper-atmospheric vertical motion coincided with the lightning anomalies observed in both Africa and South America. The anomaly over north-central Africa, however, was characterized by a 6-week shift in the annual lightning maximum with the warm phase, a result of the more complex environmental response to ENSO over the Sahel. The most consistent ENSO anomalies with appreciable lightning were found in southeastern Africa, northwestern Brazil, central Mexico, and the southern Red Sea. Of these, all but the Mexico region had enhanced lightning with the cold phase and suppressed lightning with the warm phase.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Austin G. Clark, austin.clark@uah.edu

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) was used to investigate interannual variability of lightning from 1998 to 2014 within the 38°S–38°N range. Previous studies have indicated that the El Niño–Southern Oscillation (ENSO) phenomenon is one significant contributor to interannual lightning variability, potentially the dominant mechanism on the global scale. This period of 16 years contained four warm- (El Niño), eight cold- (La Niña), and four neutral-phase ENSO years based on the oceanic Niño index. Large magnitude lightning anomalies were found during the warm phase of ENSO, with mean warm-phase anomalies of >10 flashes (1000 km)−2 min−1 in north-central Africa and Argentina. This includes a +35 flashes (1000 km)−2 min−1 anomaly in Argentina during the 2009 El Niño. In general, large-scale anomalies of thermodynamic properties and upper-atmospheric vertical motion coincided with the lightning anomalies observed in both Africa and South America. The anomaly over north-central Africa, however, was characterized by a 6-week shift in the annual lightning maximum with the warm phase, a result of the more complex environmental response to ENSO over the Sahel. The most consistent ENSO anomalies with appreciable lightning were found in southeastern Africa, northwestern Brazil, central Mexico, and the southern Red Sea. Of these, all but the Mexico region had enhanced lightning with the cold phase and suppressed lightning with the warm phase.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Austin G. Clark, austin.clark@uah.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.8114 MB)
Save
  • Blakeslee, R. J., D. M. Mach, M. F. Stewart, D. E. Buechler, and H. J. Christian, 1998: Lightning Imaging Sensor (LIS) on TRMM science data. NASA Global Hydrology Resource Center DAAC, accessed 15 November 2017, https://doi.org/10.5067/LIS/LIS/DATA201.

  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bovalo, C., C. Barthe, and N. Bègue, 2012: A lightning climatology of the South-West Indian Ocean. Nat. Hazards Earth Syst. Sci., 12, 26592670, https://doi.org/10.5194/nhess-12-2659-2012.

    • Search Google Scholar
    • Export Citation
  • Bruick, Z. S., K. L. Rasmussen, and D. J. Cecil, 2019a: Subtropical South American hailstorm characteristics and environments. Mon. Wea. Rev., 147, 42894304, https://doi.org/10.1175/MWR-D-19-0011.1.

    • Search Google Scholar
    • Export Citation
  • Bruick, Z. S., K. L. Rasmussen, A. K. Rowe, and L. A. McMurdie, 2019b: Characteristics of intense convection in subtropical South America as influenced by El Niño–Southern Oscillation. Mon. Wea. Rev., 147, 19471966, https://doi.org/10.1175/MWR-D-18-0342.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2015: TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J. Climate, 28, 65366547, https://doi.org/10.1175/JCLI-D-15-0124.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2017: LIS/OTD gridded lightning climatology data collection version 2.3.2015. NASA, accessed 1 September 2017, https://doi.org/10.5067/LIS/LIS-OTD/DATA311.

  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., S. J. Goodman, D. Cecil, D. Buechler, F. J. Robertson, J. Pittman, and R. J. Blakeslee, 2008: Global lightning activity from the ENSO perspective. Geophys. Res. Lett., 35, L19804, https://doi.org/10.1029/2008GL034321.

    • Search Google Scholar
    • Export Citation
  • Collier, A. B., and A. R. W. Hughes, 2011: Lightning and the African ITCZ. J. Atmos. Sol.-Terr. Phys., 73, 23922398, https://doi.org/10.1016/j.jastp.2011.08.010.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., 2016: Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world. Sci. Rep., 6, 20874, https://doi.org/10.1038/srep20874.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, K. Knupp, K. Driscoll, and E. W. McCaul Jr., 2000: The 1997–98 El Niño event and related wintertime lightning variations in the southeastern United States. Geophys. Res. Lett., 27, 541544, https://doi.org/10.1029/1999GL010808.

    • Search Google Scholar
    • Export Citation
  • Hamid, E. Y., Z.-I. Kawasaki, and R. Mardiana, 2001: Impact of the 1997–98 El Niño event on lightning activity over Indonesia. Geophys. Res. Lett., 28, 147150, https://doi.org/10.1029/2000GL011374.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: NOAA extended reconstructed sea surface temperature (ERSST), version 5. NOAA/National Centers for Environmental Information, accessed 1 July 2018, https://doi.org/10.7289/V5T72FNM.

  • Kumar, P. R., and A. K. Kamra, 2012: Variability of lightning activity in south/southeast Asia during 1997–98 and 2002–03 El Niño/La Niña events. Atmos. Res., 118, 84102, https://doi.org/10.1016/j.atmosres.2012.06.004.

    • Search Google Scholar
    • Export Citation
  • Laing, A., M. LaJoie, S. Reader, and K. Pfeiffer, 2008: The influence of the El Niño–Southern Oscillation on cloud-to-ground lightning activity along the Gulf Coast. Part II: Monthly correlations. Mon. Wea. Rev., 136, 25442556, https://doi.org/10.1175/2007MWR2228.1.

    • Search Google Scholar
    • Export Citation
  • LaJoie, M., and A. Laing, 2008: The influence of the El Niño–Southern Oscillation on cloud-to-ground lightning activity along the Gulf Coast. Part I: Lightning climatology. Mon. Wea. Rev., 136, 25232542, https://doi.org/10.1175/2007MWR2227.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T., 2022: Quality controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) science data. NASA Global Hydrology Resource Center DAAC, accessed 15 May 2023, https://doi.org/10.5067/LIS/ISSLIS/DATA108.

  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Lavigne, T., C. Liu, and N. Liu, 2019: How does the trend in thunder days relate to the variation of lightning flash density? J. Geophys. Res. Atmos., 124, 49554974, https://doi.org/10.1029/2018JD029920.

    • Search Google Scholar
    • Export Citation
  • Liu, N., C. Liu, and T. Lavigne, 2019: The variation of the intensity, height, and size of precipitation systems with El Niño–Southern Oscillation in the tropics and subtropics. J. Climate, 32, 42814297, https://doi.org/10.1175/JCLI-D-18-0766.1.

    • Search Google Scholar
    • Export Citation
  • Murray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman, and W. J. Koshak, 2012: Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res., 117, D20307, https://doi.org/10.1029/2012JD017934.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2018: The ITCZ and the seasonal cycle over equatorial Africa. Bull. Amer. Meteor. Soc., 99, 337348, https://doi.org/10.1175/BAMS-D-16-0287.1.

    • Search Google Scholar
    • Export Citation
  • Sátori, G., and B. Zieger, 1999: El Niño related meridional oscillation of global lightning activity. J. Geophys. Res., 26, 13651368, https://doi.org/10.1029/1999GL900264.

    • Search Google Scholar
    • Export Citation
  • Sátori, G., E. Williams, and I. Lemperger, 2009: Variability of global lightning activity on the ENSO time scale. Atmos. Res., 91, 500507, https://doi.org/10.1016/j.atmosres.2008.06.014.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332, https://doi.org/10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365, https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, https://doi.org/10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., Y. Di, and K. Qie, 2016: Variability of lightning flash and thunderstorm over East/Southeast Asia on the ENSO time scales. Atmos. Res., 169, 377390, https://doi.org/10.1016/j.atmosres.2015.10.022.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 314 314 160
Full Text Views 66 66 39
PDF Downloads 84 84 44