Assimilation of Radar Reflectivity via a Full-Hydrometeor Assimilation Scheme Based on the WSM6 Microphysics Scheme in WRF 4D-Var

Sen Yang aInstitute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
bPanjin Observatory, Liaoning Provincial Meteorological Bureau, Shenyang, China

Search for other papers by Sen Yang in
Current site
Google Scholar
PubMed
Close
,
Deqin Li aInstitute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
bPanjin Observatory, Liaoning Provincial Meteorological Bureau, Shenyang, China

Search for other papers by Deqin Li in
Current site
Google Scholar
PubMed
Close
,
Xiang-yu Huang cInstitute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Xiang-yu Huang in
Current site
Google Scholar
PubMed
Close
,
Zhiquan Liu dNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Zhiquan Liu in
Current site
Google Scholar
PubMed
Close
,
Xiao Pan aInstitute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
bPanjin Observatory, Liaoning Provincial Meteorological Bureau, Shenyang, China

Search for other papers by Xiao Pan in
Current site
Google Scholar
PubMed
Close
, and
Yunxia Duan aInstitute of Atmospheric Environment, China Meteorological Administration, Shenyang, China

Search for other papers by Yunxia Duan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The microphysical parameterization scheme employed in four-dimensional variational data assimilation (4D-Var) plays an important role in the assimilation of humidity and cloud-sensitive observations. In this study, a newly developed full-hydrometeor assimilation scheme, integrating warm-rain and cold-cloud processes, has been implemented in the Weather Research and Forecasting (WRF) 4D-Var system. This scheme is based on the WRF single-moment 6-class microphysics scheme (WSM6). Its primary objective is to directly assimilate radar reflectivity observations, with the goal of evaluating its effects on model initialization and subsequent forecasting performance. Four assimilation experiments were conducted to assess the performance of the full-hydrometeor assimilation scheme against the warm-rain assimilation scheme. These experiments also investigated reflectivity assimilation using both indirect and direct methods. We found that the nonlinearity of the radar operator in the two direct reflectivity assimilation experiments requires more iterations for cost function reduction than in the indirect assimilation method. The hydrometeor fields were reasonably analyzed using the full-hydrometeor assimilation scheme, particularly improving the simulation of ice-phase hydrometeors and reflectivity above the melting layer. The assimilation of radar reflectivity led to improvements in short-term (0–3 h) precipitation forecasting with the full-hydrometeor assimilation scheme. Assimilation experiments across multiple case studies reaffirmed that assimilating radar reflectivity observations with the full-hydrometeor assimilation scheme accelerated model spinup and yielded enhancements in 0–3-h total accumulate precipitation forecasts for a range of precipitation thresholds.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deqin Li, lewen05@hotmail.com

Abstract

The microphysical parameterization scheme employed in four-dimensional variational data assimilation (4D-Var) plays an important role in the assimilation of humidity and cloud-sensitive observations. In this study, a newly developed full-hydrometeor assimilation scheme, integrating warm-rain and cold-cloud processes, has been implemented in the Weather Research and Forecasting (WRF) 4D-Var system. This scheme is based on the WRF single-moment 6-class microphysics scheme (WSM6). Its primary objective is to directly assimilate radar reflectivity observations, with the goal of evaluating its effects on model initialization and subsequent forecasting performance. Four assimilation experiments were conducted to assess the performance of the full-hydrometeor assimilation scheme against the warm-rain assimilation scheme. These experiments also investigated reflectivity assimilation using both indirect and direct methods. We found that the nonlinearity of the radar operator in the two direct reflectivity assimilation experiments requires more iterations for cost function reduction than in the indirect assimilation method. The hydrometeor fields were reasonably analyzed using the full-hydrometeor assimilation scheme, particularly improving the simulation of ice-phase hydrometeors and reflectivity above the melting layer. The assimilation of radar reflectivity led to improvements in short-term (0–3 h) precipitation forecasting with the full-hydrometeor assimilation scheme. Assimilation experiments across multiple case studies reaffirmed that assimilating radar reflectivity observations with the full-hydrometeor assimilation scheme accelerated model spinup and yielded enhancements in 0–3-h total accumulate precipitation forecasts for a range of precipitation thresholds.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deqin Li, lewen05@hotmail.com
Save
  • Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273287, https://doi.org/10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ban, J., Z. Liu, X. Zhang, X. Y. Huang, and H. Wang, 2017: Precipitation data assimilation in WRFDA 4D-Var: Implementation and application to convection-permitting forecasts over United States. Tellus, 69A, 1368310, https://doi.org/10.1080/16000870.2017.1368310.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Fang, M. Chen, and H. Wang, 2021: Diurnally varying background error covariances estimated in RMAPS-ST and their impacts on operational implementations. Atmos. Res., 257, 105624, https://doi.org/10.1016/j.atmosres.2021.105624.

    • Search Google Scholar
    • Export Citation
  • Descombes, G., T. Auligné, F. Vandenberghe, D. M. Barker, and J. Barré, 2015: Generalized background error covariance matrix model (GEN_BE v2.0). Geosci. Model Dev., 8, 669696, https://doi.org/10.5194/gmd-8-669-2015.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, https://doi.org/10.1175/JAS-D-11-0162.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2014: Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation. Mon. Wea. Rev., 142, 33263346, https://doi.org/10.1175/MWR-D-14-00025.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143, 31893206, https://doi.org/10.1002/qj.3172.

    • Search Google Scholar
    • Export Citation
  • Gong, Y., S. Yang, J. Yin, S. Wang, X. Pan, D. Li, and X. Yi, 2022: Validation of the reproducibility of warm-season northeast China cold vortices for ERA5 and MERRA-2 reanalysis. J. Appl. Meteor. Climatol., 61, 13491366, https://doi.org/10.1175/JAMC-D-22-0052.1.

    • Search Google Scholar
    • Export Citation
  • Hascoet, L., and V. Pascual, 2013: The tapenade automatic differentiation tool: Principles, model, and specification. ACM Trans. Math. Software, 39, 20, https://doi.org/10.1145/2450153.2450158.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, https://doi.org/10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314, https://doi.org/10.1175/2008MWR2577.1.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., Y. Liu, M. Wei, Y. Shi, C. Fang, Z. Shu, and Y. Li, 2021: Hydrometeor and latent heat nudging for radar reflectivity assimilation: Response to the model states and uncertainties. Remote Sens., 13, 3821, https://doi.org/10.3390/rs13193821.

    • Search Google Scholar
    • Export Citation
  • Ingleby, N. B., A. C. Lorenc, K. Ngan, F. Rawlins, and D. R. Jackson, 2013: Improved variational analyses using a nonlinear humidity control variable. Quart. J. Roy. Meteor. Soc., 139, 18751887, https://doi.org/10.1002/qj.2073.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., and L. Liu, 2014: A test pattern identification algorithm and its application to CINRAD/SA(B) data. Adv. Atmos. Sci., 31, 331343, https://doi.org/10.1007/s00376-013-2315-9.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, https://doi.org/10.1175/2007MWR2083.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one-and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 14571475, https://doi.org/10.1175/MWR-D-11-00032.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., X. Zou, M. Zeng, N. Wang, and F. Tang, 2021: Exploring the assimilation of ATMS cloud retrieval products and its benefits for CrIS all-sky radiance simulations. Mon. Wea. Rev., 149, 18731901, https://doi.org/10.1175/MWR-D-20-0345.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF hybrid Ensemble‐3DVAR system for the prediction of Hurricane Ike (2008). Mon. Wea. Rev., 140, 35073524, https://doi.org/10.1175/MWR-D-12-00043.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., I. M. Navon, and Y. Zhu, 2000: Performance of 4D-Var with different strategies for the use of adjoint physics with the FSU global spectral model. Mon. Wea. Rev., 128, 668688, https://doi.org/10.1175/1520-0493(2000)128<0668:POVWDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., M. Xue, and R. Kong, 2019: Direct assimilation of radar reflectivity data using 3DVAR: Treatment of hydrometeor background errors and OSSE tests. Mon. Wea. Rev., 147, 1729, https://doi.org/10.1175/MWR-D-18-0033.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Ban, J. S. Hong, and Y. H. Kuo, 2020: Multi‐resolution incremental 4D-Var for WRF: Implementation and application at convective scale. Quart. J. Roy. Meteor. Soc., 146, 36613674, https://doi.org/10.1002/qj.3865.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., and F. Rabier, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. II: Experimental results with improved physics. Quart. J. Roy. Meteor. Soc., 126, 11711190, https://doi.org/10.1002/qj.49712656416.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120, 14331446, https://doi.org/10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., M. Xue, and G. Ge, 2016: Incorporating diagnosed intercept parameters and the graupel category within the ARPS cloud analysis system for the initialization of double-moment microphysics: Testing with a squall line over South China. Mon. Wea. Rev., 144, 371392, https://doi.org/10.1175/MWR-D-15-0008.1.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., Wang, M., and Xue, M., 2020: Impacts of humidity adjustment through radar data assimilation using cloud analysis on the analysis and prediction of a squall line in southern China. Earth Space Sci., 7, e2019EA000893, https://doi.org/10.1029/2019EA000893.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 11431170, https://doi.org/10.1002/qj.49712656415.

    • Search Google Scholar
    • Export Citation
  • Radi, A., A. A. Al-Katheri, and A. Dhanhani, 2007: Tuning of WRF 3D-VAR data assimilation system over Middle-East and Arabian Peninsula. Eighth WRF User Workshop, Boulder, CO, NCAR, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=996008b61f91b45da8cf53b30ab8c38aa24b682e.

  • Steiner, M., and J. A. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection and removal of non-precipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673686, https://doi.org/10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the US Great Plains. Mon. Wea. Rev., 141, 22452264, https://doi.org/10.1175/MWR-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, W. Tong, Y. Zhang, C. Lin, and D. Xu, 2016: Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Wea. Rev., 144, 149169, https://doi.org/10.1175/MWR-D-14-00205.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., Y. Zhu, L. Zhou, E. Liu, M. Chen, Q. Liu, and S. J. Lin, 2020: Multiple hydrometeors all-sky microwave radiance assimilation in FV3GFS. Mon. Wea. Rev., 148, 29712995, https://doi.org/10.1175/MWR-D-19-0231.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., T. Auligné, and H. Morrison, 2012: Impact of microphysics scheme complexity on the propagation of initial perturbations. Mon. Wea. Rev., 140, 22872296, https://doi.org/10.1175/MWR-D-12-00005.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X. Y. Huang, and T. Auligné, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, https://doi.org/10.1175/MWR-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., X. Y. Huang, J. Sun, D. Xu, M. Zhang, S. Fan, and J. Zhong, 2014: Inhomogeneous background error modeling for WRF-Var using the NMC method. J. Appl. Meteor. Climatol., 53, 22872309, https://doi.org/10.1175/JAMC-D-13-0281.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and M. Zhang, 2021: A constrained data assimilation algorithm based on GSI hybrid 3D-EnVar and its application. Mon. Wea. Rev., 149, 33653378, https://doi.org/10.1175/MWR-D-21-0052.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Z. Liu, 2019: A radar reflectivity operator with ice-phase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data. Geosci. Model Dev., 12, 40314051, https://doi.org/10.5194/gmd-12-4031-2019.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422, https://doi.org/10.1175/JAM2439.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., and Coauthors, 2008: Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event. Mon. Wea. Rev., 136, 36963713, https://doi.org/10.1175/2008MWR2235.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 4666, https://doi.org/10.1175/JTECH1835.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., D. Q. Li, L. Q. Chen, Z. Q. Liu, X.-Y. Huang, and X. Pan, 2023: The regularized WSM6 microphysical scheme and its validation in WRF 4D-Var. Adv. Atmos. Sci., 40, 483500, https://doi.org/10.1007/s00376-022-2058-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., F. Carr, and K. Brewster, 1998: ADAS cloud analysis. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 185–188.

  • Zhang, X., X. Y. Huang, J. Liu, J. Poterjoy, Y. Weng, F. Zhang, and H. Wang, 2014: Development of an efficient regional four-dimensional variational data assimilation system for WRF. J. Atmos. Oceanic Technol., 31, 27772794, https://doi.org/10.1175/JTECH-D-13-00076.1.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Y. H. Kuo, 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Wea. Rev., 124, 28592882, https://doi.org/10.1175/1520-0493(1996)124<2859:RATAOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 348 348 89
Full Text Views 89 89 24
PDF Downloads 117 117 31