Data Assimilation Impact of GNSS RO Measurements from Cube Satellites on Arctic Weather Forecasts

Yonghan Choi aDivision of Ocean and Atmosphere Sciences, Korea Polar Research Institute, Incheon, South Korea

Search for other papers by Yonghan Choi in
Current site
Google Scholar
PubMed
Close
,
Joowan Kim bDepartment of Atmospheric Science, Kongju National University, Gongju, South Korea
cEarth Environment Research Center, Kongju National University, Gongju, South Korea

Search for other papers by Joowan Kim in
Current site
Google Scholar
PubMed
Close
,
Joo-Hong Kim aDivision of Ocean and Atmosphere Sciences, Korea Polar Research Institute, Incheon, South Korea

Search for other papers by Joo-Hong Kim in
Current site
Google Scholar
PubMed
Close
, and
Dong-Hyun Cha dDepartment of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Dong-Hyun Cha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the effects of assimilating Global Navigation Satellite System (GNSS) radio occultation (RO) observations from existing and recently added commercial cube satellites on analyses and forecasts over the Arctic region were investigated by conducting observing system experiments (OSEs). Profiles of refractivity were assimilated with a local observation operator using the three-dimensional variational method. The analyses and forecasts from the OSEs were verified against ERA5 reanalysis, radiosonde observations, and buoy observations. In addition to the averaged impact on forecast skill, the impact of GNSS RO observations was further examined for an individual Arctic cyclone case, focusing on the added value of the cube satellite data. The effects of GNSS RO observations from existing satellites on analyses and forecasts over the Arctic region are positive, and the assimilation of GNSS RO observations from cube satellites leads to additional improvements, particularly for temperature in the upper troposphere and lower stratosphere (UTLS). Temperature biases in the UTLS are significantly reduced in the analyses, and the improved analyses result in better forecasts of upper-level potential vorticity and cyclone development when GNSS RO observations from cube satellites are assimilated. This result demonstrates the potential of GNSS RO data from cube satellites to enhance forecasts over the Arctic region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonghan Choi, yhdchoi@kopri.re.kr

Abstract

In this study, the effects of assimilating Global Navigation Satellite System (GNSS) radio occultation (RO) observations from existing and recently added commercial cube satellites on analyses and forecasts over the Arctic region were investigated by conducting observing system experiments (OSEs). Profiles of refractivity were assimilated with a local observation operator using the three-dimensional variational method. The analyses and forecasts from the OSEs were verified against ERA5 reanalysis, radiosonde observations, and buoy observations. In addition to the averaged impact on forecast skill, the impact of GNSS RO observations was further examined for an individual Arctic cyclone case, focusing on the added value of the cube satellite data. The effects of GNSS RO observations from existing satellites on analyses and forecasts over the Arctic region are positive, and the assimilation of GNSS RO observations from cube satellites leads to additional improvements, particularly for temperature in the upper troposphere and lower stratosphere (UTLS). Temperature biases in the UTLS are significantly reduced in the analyses, and the improved analyses result in better forecasts of upper-level potential vorticity and cyclone development when GNSS RO observations from cube satellites are assimilated. This result demonstrates the potential of GNSS RO data from cube satellites to enhance forecasts over the Arctic region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonghan Choi, yhdchoi@kopri.re.kr

Supplementary Materials

    • Supplemental Materials (PDF 3.1674 MB)
Save
  • Aizawa, T., and H. L. Tanaka, 2016: Axisymmetric structure of the long lasting summer Arctic cyclones. Polar Sci., 10, 192198, https://doi.org/10.1016/j.polar.2016.02.002.

    • Search Google Scholar
    • Export Citation
  • Aizawa, T., H. L. Tanaka, and M. Satoh, 2014: Rapid development of Arctic cyclone in June 2008 simulated by the cloud resolving global model NICAM. Meteor. Atmos. Phys., 126, 105117, https://doi.org/10.1007/s00703-013-0272-6.

    • Search Google Scholar
    • Export Citation
  • Anlauf, H., D. Pingel, and A. Rhodin, 2011: Assimilation of GPS radio occultation data at DWD. Atmos. Meas. Tech., 4, 11051113, https://doi.org/10.5194/amt-4-1105-2011.

    • Search Google Scholar
    • Export Citation
  • Barker, D., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., L. Magnusson, J. N. Thépaut, and T. M. Hamill, 2016: Aspects of ECMWF model performance in polar areas. Quart. J. Roy. Meteor. Soc., 142, 583596, https://doi.org/10.1002/qj.2449.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., 2020: An assessment of GNSS radio occultation data produced by Spire. Quart. J. Roy. Meteor. Soc., 146, 37723788, https://doi.org/10.1002/qj.3872.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, https://doi.org/10.1029/2008JD010300.

    • Search Google Scholar
    • Export Citation
  • Buontempo, C., A. Jupp, and M. Rennie, 2008: Operational NWP assimilation of GPS radio occultation data. Atmos. Sci. Lett., 9, 129133, https://doi.org/10.1002/asl.173.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., and S. Healy, 2014: Impact of GPS radio occultation measurements in the ECMWF system using adjoint‐based diagnostics. Quart. J. Roy. Meteor. Soc., 140, 23152320, https://doi.org/10.1002/qj.2300.

    • Search Google Scholar
    • Export Citation
  • Chang, H., J. Lee, H. Yoon, Y. J. Morton, and A. Saltman, 2022: Performance assessment of radio occultation data from GeoOptics by comparing with COSMIC data. Earth Planets Space, 74, 108, https://doi.org/10.1186/s40623-022-01667-6.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., T.-K. Wee, Y.-H. Kuo, and D. H. Bromwich, 2014: An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Mon. Wea. Rev., 142, 41874206, https://doi.org/10.1175/MWR-D-14-00024.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, https://doi.org/10.1175/2009WAF2222302.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and J. C. Derber, 2008: Operational implementation of COSMIC observations into NCEP’s Global Data Assimilation System. Wea. Forecasting, 23, 702711, https://doi.org/10.1175/2008WAF2007070.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., Y.-H. Kuo, D. Barker, and S. R. H. Rizvi, 2006: Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Mon. Wea. Rev., 134, 32833296, https://doi.org/10.1175/MWR3241.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, R. Treadon, and R. J. Purser, 2007: Assimilation of global positioning system radio occultation observations into NCEP’s Global Data Assimilation System. Mon. Wea. Rev., 135, 31743193, https://doi.org/10.1175/MWR3461.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, https://doi.org/10.1029/2012JD017782.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proc. ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 97–112, https://www.ecmwf.int/sites/default/files/elibrary/2004/16005-variational-bias-radiance-data-ecmwf-system.pdf.

  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Diaconis, P., and B. Efron, 1983: Computer intensive methods in statistics. Sci. Amer., 248, 116130, https://doi.org/10.1038/scientificamerican0583-116.

    • Search Google Scholar
    • Export Citation
  • Graham, R. M., S. R. Hudson, and M. Maturilli, 2019a: Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses. Geophys. Res. Lett., 46, 61386147, https://doi.org/10.1029/2019GL082781.

    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2019b: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Search Google Scholar
    • Export Citation
  • Gu, M., Z. Wang, J. Wei, and X. Yu, 2021: An assessment of Arctic cloud water paths in atmospheric reanalyses. Acta Oceanol. Sin., 40, 4657, https://doi.org/10.1007/s13131-021-1706-5.

    • Search Google Scholar
    • Export Citation
  • Ha, J.-H., J.-H. Kang, and S.-J. Choi, 2018: The impact of vertical resolution in the assimilation of GPS radio occultation data. Wea. Forecasting, 33, 10331044, https://doi.org/10.1175/WAF-D-17-0061.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM): Version 1. NOAA Tech. Rep. NESDIS 122, 40 pp.

  • Healy, S. B., and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605623, https://doi.org/10.1256/qj.04.182.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., and D. H. Bromwich, 2008: Development and testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 19711989, https://doi.org/10.1175/2007MWR2112.1.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L.-S. Bai, M. Barlage, and A. G. Slater, 2011: Development and testing of Polar WRF. Part III: Arctic land. J. Climate, 24, 2648, https://doi.org/10.1175/2010JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and M. Matsueda, 2016: Verification of global numerical weather forecasting systems in polar regions using TIGGE data. Quart. J. Roy. Meteor. Soc., 142, 574582, https://doi.org/10.1002/qj.2437.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2016: Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Amer. Meteor. Soc., 97, 16311647, https://doi.org/10.1175/BAMS-D-14-00246.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, https://doi.org/10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Lawrence, H., N. Bormann, I. Sandu, J. Day, J. Farnan, and P. Bauer, 2019: Use and impact of Arctic observations in the ECMWF Numerical Weather Prediction system. Quart. J. Roy. Meteor. Soc., 145, 34323454, https://doi.org/10.1002/qj.3628.

    • Search Google Scholar
    • Export Citation
  • Lien, G.-Y., and Coauthors, 2021: Assimilation impact of early FORMOSAT-7/COSMIC-2 GNSS radio occultation data with Taiwan’s CWB Global Forecast System. Mon. Wea. Rev., 149, 21712191, https://doi.org/10.1175/MWR-D-20-0267.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. Xue, 2014: Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation. J. Meteor. Res., 28, 10611074, https://doi.org/10.1007/s13351-014-4028-0.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. S. Schwartz, C. Snyder, and S.-Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 40174034, https://doi.org/10.1175/MWR-D-12-00083.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., Y.-H. Kuo, B. Wang, W.-S. Wu, and S. Sokolovskiy, 2009: Comparison of local and nonlocal observation operators for the assimilation of GPS RO data with the NCEP GSI system: An OSSE study. Mon. Wea. Rev., 137, 35753587, https://doi.org/10.1175/2009MWR2809.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poli, P., P. Moll, D. Puech, F. Rabier, and S. B. Healy, 2009: Quality control, error analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. Terr. Atmos. Oceanic Sci., 20, 101113, https://doi.org/10.3319/TAO.2008.01.21.02(F3C).

    • Search Google Scholar
    • Export Citation
  • Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136, 116131, https://doi.org/10.1002/qj.521.

    • Search Google Scholar
    • Export Citation
  • Singh, R., S. P. Ojha, R. Anthes, and D. Hunt, 2021: Evaluation and assimilation of the COSMIC-2 radio occultation constellation observed atmospheric refractivity in the WRF data assimilation system. J. Geophys. Res. Atmos., 126, e2021JD034935, https://doi.org/10.1029/2021JD034935.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Smith, E. K., and S. Weintraub, 1953: The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE, 41, 10351037, https://doi.org/10.1109/JRPROC.1953.274297.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., Y.-H. Kuo, and W. Wang, 2005a: Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model. Mon. Wea. Rev., 133, 22002212, https://doi.org/10.1175/MWR2948.1.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., Y.-H. Kuo, and W. Wang, 2005b: Evaluation of a linear phase observation operator with CHAMP radio occultation data and high-resolution regional analysis. Mon. Wea. Rev., 133, 30533059, https://doi.org/10.1175/MWR3006.1.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., A. Yamagami, and S. Takahashi, 2012: The structure and behavior of the Arctic cyclone in summer analyzed by the JRA-25/JCDAS data. Polar Sci., 6, 5569, https://doi.org/10.1016/j.polar.2012.03.001.

    • Search Google Scholar
    • Export Citation
  • Tao, W., J. Zhang, and X. Zhang, 2017a: The role of stratosphere vortex downward intrusion in a long‐lasting late‐summer Arctic storm. Quart. J. Roy. Meteor. Soc., 143, 19531966, https://doi.org/10.1002/qj.3055.

    • Search Google Scholar
    • Export Citation
  • Tao, W., J. Zhang, Y. Fu, and X. Zhang, 2017b: Driving roles of tropospheric and stratospheric thermal anomalies in intensification and persistence of the Arctic superstorm in 2012. Geophys. Res. Lett., 44, 10 01710 025, https://doi.org/10.1002/2017GL074778.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5). 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction. Seattle, WA, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/84Annual/webprogram/Paper69061.html.

  • Wang, C., R. M. Graham, K. Wang, S. Gerland, and M. A. Granskog, 2019: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere, 13, 16611679, https://doi.org/10.5194/tc-13-1661-2019.

    • Search Google Scholar
    • Export Citation
  • Wee, T.-K., Y.-H. Kuo, D. H. Bromwich, and A. J. Monaghan, 2008: Assimilation of GPS radio occultation refractivity data from CHAMP and SAC-C missions over high southern latitudes with MM5 4DVAR. Mon. Wea. Rev., 136, 29232944, https://doi.org/10.1175/2007MWR1925.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., W. Xiao, Z. Zhang, X. Cheng, F. Hui, and J. Zhao, 2021: Evaluation of 2-m air temperature and surface temperature from ERA5 and ERA-I using buoy observations in the Arctic during 2010–2020. Remote Sens., 13, 2813, https://doi.org/10.3390/rs13142813.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 412 412 57
Full Text Views 138 138 37
PDF Downloads 144 144 37