The Influence of Atmospheric Bores on Nocturnal Convection Initiation in Weakly Forced Synoptic Environments

Dylan W. Reif aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Dylan W. Reif in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6648-6715
,
Howard B. Bluestein aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
, and
David B. Parsons aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Parsons in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes an idealized numerical simulation to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt–Väisälä frequency of 0.011 s−1 above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on composite sounding. The characteristics of the simulated bore were representative of observed bores. The vertical velocities associated with this simulated bore were between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100–150 km ahead of the bore passage. The prebore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low to midtroposphere between 1 and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.

Reif’s current affiliation: CoreLogic, Louisville, Colorado.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dylan W. Reif, dylan.reif.wx@gmail.com

Abstract

This study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes an idealized numerical simulation to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt–Väisälä frequency of 0.011 s−1 above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on composite sounding. The characteristics of the simulated bore were representative of observed bores. The vertical velocities associated with this simulated bore were between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100–150 km ahead of the bore passage. The prebore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low to midtroposphere between 1 and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.

Reif’s current affiliation: CoreLogic, Louisville, Colorado.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dylan W. Reif, dylan.reif.wx@gmail.com
Save
  • Adams-Selin, R. D., 2020: Impact of convectively generated low-frequency gravity waves on evolution of mesoscale convective systems. J. Atmos. Sci., 77, 34413460, https://doi.org/10.1175/JAS-D-19-0250.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., and R. H. Johnson, 2013: Examination of gravity waves associated with the 13 March 2003 bow echo. Mon. Wea. Rev., 141, 37353756, https://doi.org/10.1175/MWR-D-12-00343.1.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and P. A. Davies, 1980: Laboratory Studies of Topographic Effects in Rotating and/or Stratified Fluid. Orographic Effects in Planetary Flows. R. Hide and P. W. White Eds., GARP Publication No. 23, World Meteorological Organization, 233–299.

  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Becker, T., P. Bechtold, and I. Sandu, 2021: Characteristics of convective precipitation over tropical Africa in storm‐resolving global simulations. Quart. J. Roy. Meteor. Soc., 147, 43884407, https://doi.org/10.1002/qj.4185.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., and M. J. Reeder, 2013: Wave-cloud lines over northwest Australia. Quart. J. Roy. Meteor. Soc., 139, 13111326, https://doi.org/10.1002/qj.2043.

    • Search Google Scholar
    • Export Citation
  • Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW model. Mon. Wea. Rev., 145, 31793201, https://doi.org/10.1175/MWR-D-16-0360.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, https://doi.org/10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the US warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheeks, S. M., S. Fueglistaler, and S. T. Garner, 2020: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems. Mon. Wea. Rev., 148, 26072621, https://doi.org/10.1175/MWR-D-20-0027.1.

    • Search Google Scholar
    • Export Citation
  • Colman, B. R., 1990: Thunderstorms above frontal surface in environments without positive CAPE, Part I: A climatology. Mon. Wea. Rev., 118, 11031122, https://doi.org/10.1175/1520-0493(1990)118<1103:TAFSIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies, L., M. J. Reeder, and T. P. Lane, 2017: A climatology of atmospheric pressure jumps over southeastern Australia. Quart. J. Roy. Meteor. Soc., 143, 439449, https://doi.org/10.1002/qj.2933.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., A. Shapiro, E. Fedorovich, and P. Klein, 2018: Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon. Wea. Rev., 146, 26152637, https://doi.org/10.1175/MWR-D-18-0002.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 plains elevated convection at night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observation study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and D. R. Durran, 2021: On the dynamics of atmospheric bores. J. Atmos. Sci., 78, 313327, https://doi.org/10.1175/JAS-D-20-0181.1.

    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and Coauthors, 2019: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

  • Hu, Q., and G. Limpert, 2021: Lift in the vertical shear of a southerly jet embedded in a uniform westerly flow. Quart. J. Roy. Meteor. Soc., 147, 15841605, https://doi.org/10.1002/qj.3982.

    • Search Google Scholar
    • Export Citation
  • Hutson, A., C. Weiss, and G. Bryan, 2019: Using the translation speed and vertical structure of gust fronts to infer buoyancy deficits within thunderstorm outflow. Mon. Wea. Rev., 147, 35753594, https://doi.org/10.1175/MWR-D-18-0439.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2019: Multicase assessment of the impacts of horizontal and vertical grid spacing, and turbulence closure model, on subkilometer-scale simulations of atmospheric bores during PECAN. Mon. Wea. Rev., 147, 15331555, https://doi.org/10.1175/MWR-D-18-0322.1.

    • Search Google Scholar
    • Export Citation
  • Kincer, J. B., 1916: Daytime and nighttime precipitation and their economic significance. Mon. Wea. Rev., 44, 628633, https://doi.org/10.1175/1520-0493(1916)44<628:DANPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, https://doi.org/10.1175/JAS3731.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W. Wilson, 2008a: Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulations. Mon. Wea. Rev., 136, 13731400, https://doi.org/10.1175/2007MWR2252.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., C. Flamant, J. W. Wilson, B. M. Gentry, and B. D. Jamison, 2008b: An atmospheric soliton observed with Doppler radar, differential absorption Lidar, and a molecular Doppler Lidar. J. Atmos. Oceanic Technol., 25, 12671287, https://doi.org/10.1175/2007JTECHA951.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. B. Smith, 2010: The detection and significance of diurnal pressure and potential vorticity anomalies east of the Rockies. J. Atmos. Sci., 67, 27342751, https://doi.org/10.1175/2010JAS3423.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K., and M. R. Kumjian, 2022: Observations of the discrete propagation of a mesoscale convective system during RELAMPAGO–CACTI. Mon. Wea. Rev., 150, 21112138, https://doi.org/10.1175/MWR-D-21-0265.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, https://doi.org/10.1175/2010MWR3422.1.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and R. H. Johnson, 2008: An observational and modeling study of an atmospheric internal bore during NAME 2004. Mon. Wea. Rev., 136, 41504167, https://doi.org/10.1175/2008MWR2486.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, https://doi.org/10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nudelman, I., R. K. Smith, and M. J. Reeder, 2010: A climatology of pressure jumps around the Gulf of Carpentaria. Aust. Meteor. Oceanogr. J., 60, 91101, https://doi.org/10.22499/2.6002.001.

    • Search Google Scholar
    • Export Citation
  • Osborne, S. R., and A. Lapworth, 2017: Initiation and propagation of an atmospheric bore in a numerical forecast model: A comparison with observations. J. Appl. Meteor. Climatol., 56, 29993016, https://doi.org/10.1175/JAMC-D-17-0045.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2016: A comparative study of the 3 June 2015 Great Plains low-level jet. Mon. Wea. Rev., 144, 29632979, https://doi.org/10.1175/MWR-D-16-0071.1.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., 1992: An explanation for intense frontal updrafts and narrow cold-frontal rainbands. J. Atmos. Sci., 49, 18101825, https://doi.org/10.1175/1520-0469(1992)049<1810:AEFIFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2018: Initiation mechanisms of nocturnal convection without nearby surface boundaries over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 146, 30533078, https://doi.org/10.1175/MWR-D-18-0040.1.

    • Search Google Scholar
    • Export Citation
  • Revathy, K., S. R. Prabhakaran Nair, and B. V. Krisha Murthy, 1996: Deduction of temperature profile from MST radar observations of vertical wind. Geophys. Res. Lett., 23, 285288, https://doi.org/10.1029/96GL00086.

    • Search Google Scholar
    • Export Citation
  • Riley, G. T., M. G. Landin, and L. F. Bosart, 1987: The diurnal variability of precipitation across the central Rockies and adjacent Great Plains. Mon. Wea. Rev., 115, 11611172, https://doi.org/10.1175/1520-0493(1987)115<1161:TDVOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2009: Nocturnal low-level jet over a shallow slope. Acta Geophys., 57, 950980, https://doi.org/10.2478/s11600-009-0026-5.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and J. G. Gebauer, 2018: Mesoscale ascent in nocturnal low-level jets. J. Atmos. Sci., 75, 14031427, https://doi.org/10.1175/JAS-D-17-0279.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., J. G. Gebauer, and D. B. Parsons, 2022: Emergence of a nocturnal low-level jet from a broad baroclinic zone. J. Atmos. Sci., 79, 13631383, https://doi.org/10.1175/JAS-D-21-0187.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1997: Gravity Currents: In the Environment and the Laboratory. 2nd ed. Cambridge University Press, 258 pp.

  • Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The Great Plains low-level jet during PECAN: Observed and simulated characteristics. Mon. Wea. Rev., 147, 18451869, https://doi.org/10.1175/MWR-D-18-0293.1.

    • Search Google Scholar
    • Export Citation
  • Stelten, S., and W. A. Gallus Jr., 2017: Pristine nocturnal convection initiation: A climatology and preliminary examination of predictability. Wea. Forecasting, 32, 16131635, https://doi.org/10.1175/WAF-D-16-0222.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984, https://doi.org/10.1175/1520-0469(1999)056<3963:LESORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, S., P. Gleckler, S. Xie, J. Lee, M.-S. Ahn, C. Covey, and C. Zhang, 2021: Evaluating the diurnal and semidiurnal cycle of precipitation in CMIP6 models using satellite- and ground-based observations. J. Climate, 34, 31893210, https://doi.org/10.1175/JCLI-D-20-0639.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, and K. W. Manning, 2014: Use of the parcel buoyancy minimum (B min) to diagnose simulated thermodynamic destabilization. Part I: Methodology and case studies of MCS initiation environments. Mon. Wea. Rev., 142, 945966, https://doi.org/10.1175/MWR-D-13-00272.1.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989a: Numerical study of an observed orogenic mesoscale convective system. Part II: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273304, https://doi.org/10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305328, https://doi.org/10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., T. E. VanZandt, M. Mizumoto, S. Kato, and S. Fukao, 1991: Spectral analysis of temperature and Brunt-Väisälä frequency fluctuations observed by radiosondes. J. Geophys. Res., 96, 17 26517 278, https://doi.org/10.1029/91JD01944.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variation in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2016: A case of an undular bore and prefrontal precipitation in the Australian Alps. Mon. Wea. Rev., 144, 26232644, https://doi.org/10.1175/MWR-D-15-0355.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and U. Romatschke, 2019: Where, when, and why did it rain during PECAN? Mon. Wea. Rev., 147, 35573573, https://doi.org/10.1175/MWR-D-18-0458.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253278, https://doi.org/10.1175/BAMS-85-2-253.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus Jr., R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., S. B. Trier, D. W. Reif, R. D. Roberts, and T. M. Weckwerth, 2018: Nocturnal elevated convection initiation of the PECAN 4 July hailstorm. Mon. Wea. Rev., 146, 243262, https://doi.org/10.1175/MWR-D-17-0176.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., D. B. Parsons, and Y. Wang, 2020a: Wave disturbances and their role in the maintenance, structure, and evolution of a mesoscale convection system. J. Atmos. Sci., 77, 5177, https://doi.org/10.1175/JAS-D-18-0348.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and Coauthors, 2020b: A modeling study of an atmospheric bore associated with a nocturnal convective system over China. J. Geophys. Res. Atmos., 125, e2019JD032279, https://doi.org/10.1029/2019JD032279.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., D. B. Parsons, X. Xu, J. Sun, T. Wu, F. Xu, W. Na, and G. Chen, 2022: Bores observed during the warm season of 2015–2019 over the southern North China Plain. Geophys. Res. Lett., 49, e2022GL099205, https://doi.org/10.1029/2022GL099205.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 11091 10942 2135
Full Text Views 7194 7151 6885
PDF Downloads 304 261 30