A Climatology of Convective Precipitation over Europe

Kelly Lombardo aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kelly Lombardo in
Current site
Google Scholar
PubMed
Close
and
Miranda Bitting aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Miranda Bitting in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The annual, seasonal, and diurnal spatiotemporal heavy convective precipitation patterns over a pan-European domain are analyzed in this study using a combination of datasets, including the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG) precipitation rate product, E-OBS ground-based precipitation gauge data, European climatological gauge-adjusted radar precipitation dataset (EURADCLIM), Operational Programme for the Exchange of Weather Radar Information (OPERA) ground-based radar-derived precipitation rates, and fifth major global reanalysis produced by ECMWF (ERA5) total and convective precipitation products. Arrival Time Difference Network (ATDnet) lightning data are used in conjunction with IMERG and EURADCLIM precipitation rates, with an imposed threshold of 10 mm h−1 to classify precipitation as convective. Annually, the largest convective precipitation accumulations are over the European seas and coastlines. In summer, convective precipitation is more common over the European continent, though relatively large accumulations exist over the northern coastal waters and the southern seas, with a seasonal localized maximum over the northern Adriatic Sea. Activity shifts southward to the Mediterranean and its coastlines in autumn and winter, with maxima over the Ionian Sea, the eastern Adriatic Sea, and the adjacent coastline. Over the continent, 1%–10% of the total precipitation accumulated is classified as convective, increasing to 10%–40% over the surrounding seas. In contrast, 30%–50% of ERA5 precipitation accumulations over land is produced by the convective parameterization scheme and 40%–60% over the seas; however, only 1% of ERA5 convective precipitation accumulations are from rain rates exceeding 10 mm h−1. Regional analyses indicate that convective precipitation rates over the inland mountains follow diurnal heating, though little to no diurnal pattern exists in convective precipitation rates over the seas and coastal mountains.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Lombardo, lombardo@psu.edu

Abstract

The annual, seasonal, and diurnal spatiotemporal heavy convective precipitation patterns over a pan-European domain are analyzed in this study using a combination of datasets, including the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG) precipitation rate product, E-OBS ground-based precipitation gauge data, European climatological gauge-adjusted radar precipitation dataset (EURADCLIM), Operational Programme for the Exchange of Weather Radar Information (OPERA) ground-based radar-derived precipitation rates, and fifth major global reanalysis produced by ECMWF (ERA5) total and convective precipitation products. Arrival Time Difference Network (ATDnet) lightning data are used in conjunction with IMERG and EURADCLIM precipitation rates, with an imposed threshold of 10 mm h−1 to classify precipitation as convective. Annually, the largest convective precipitation accumulations are over the European seas and coastlines. In summer, convective precipitation is more common over the European continent, though relatively large accumulations exist over the northern coastal waters and the southern seas, with a seasonal localized maximum over the northern Adriatic Sea. Activity shifts southward to the Mediterranean and its coastlines in autumn and winter, with maxima over the Ionian Sea, the eastern Adriatic Sea, and the adjacent coastline. Over the continent, 1%–10% of the total precipitation accumulated is classified as convective, increasing to 10%–40% over the surrounding seas. In contrast, 30%–50% of ERA5 precipitation accumulations over land is produced by the convective parameterization scheme and 40%–60% over the seas; however, only 1% of ERA5 convective precipitation accumulations are from rain rates exceeding 10 mm h−1. Regional analyses indicate that convective precipitation rates over the inland mountains follow diurnal heating, though little to no diurnal pattern exists in convective precipitation rates over the seas and coastal mountains.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Lombardo, lombardo@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.0036 MB)
Save
  • Alhammoud, B., C. Claud, B. M. Funatsu, K. Béranger, and J.-P. Chaboureau, 2014: Patterns of precipitation and convection occurrence over the Mediterranean Basin derived from a decade of microwave satellite observations. Atmosphere, 5, 370398, https://doi.org/10.3390/atmos5020370.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., 2018: Climate Change and Severe Thunderstorms. Oxford University Press, 70 pp, https://doi.org/10.1093/acrefore/9780190228620.013.62.

  • Anagnostou, E. N., T. Chronis, and D. P. Lalas, 2002: New receiver network advances long-range lightning monitoring. Eos Trans., 83, 589595, https://doi.org/10.1029/2002EO000403.

    • Search Google Scholar
    • Export Citation
  • Anderson, G., and D. Klugmann, 2014: A European lightning density analysis using 5 years of ATDnet data. Nat. Hazards Earth Syst. Sci., 14, 815829, https://doi.org/10.5194/nhess-14-815-2014.

    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., and D. Chen, 2009: A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor. Appl. Climatol., 96, 249260, https://doi.org/10.1007/s00704-008-0028-2.

    • Search Google Scholar
    • Export Citation
  • Bandhauer, M., and Coauthors, 2022: Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. Int. J. Climatol., 42, 727747, https://doi.org/10.1002/joc.7269.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., and J. B. Theiss, 1973: Wind gradients and variance of Doppler spectra in showers viewed horizontally. J. Appl. Meteor. Climatol., 12, 688693, https://doi.org/10.1175/1520-0450(1973)012<0688:WGAVOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bech, J., J. Arús, S. Castán, N. Pineda, T. Rigo, J. Montanyà, and O. van der Velde, 2015: A study of the 21 March 2021 tornadic quasi linear convective system on Catalonia. Atmos. Res., 158–159, 192209, https://doi.org/10.1016/j.atmosres.2014.08.009.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., D. Giaiotti, A. Manzato, F. Stel, and S. Micheletti, 2001: The June 4th 1999 severe weather episode in San Quirino, Italy: A tornado event? Atmos. Res., 56, 213232, https://doi.org/10.1016/S0169-8095(00)00074-0.

    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Bertato, M., D. B. Giaiotti, A. Manzato, and F. Stel, 2003: An interesting case of tornado in Friuli-Northeastern Italy. Atmos. Res., 67–68, 321, https://doi.org/10.1016/S0169-8095(03)00043-7.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, https://doi.org/10.1016/j.atmosres.2012.04.002.

    • Search Google Scholar
    • Export Citation
  • Buontempo, C., and Coauthors, 2020: Fostering the development of climate services through Copernicus Climate Change Service (C3S) for agriculture applications. Wea. Climate Extremes, 27, 100226, https://doi.org/10.1016/j.wace.2019.100226.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., and P. P. Alberoni, 1992: Analysis and numerical modelling of a frontal passage associated with thunderstorm development over the Po Valley and the Adriatic Sea. Meteor. Atmos. Phys., 48, 205224, https://doi.org/10.1007/BF01029569.

    • Search Google Scholar
    • Export Citation
  • Cacciamani, C., F. Battaglia, P. Patruno, L. Pomi, A. Selvini, and S. Tibaldi, 1995: A climatological study of thunderstorm activity in the Po Valley. Theor. Appl. Climatol., 50, 185203, https://doi.org/10.1007/BF00866116.

    • Search Google Scholar
    • Export Citation
  • Campos, R. M., C. B. Gramcianinov, R. de Camargo, and P. L. da Silva Dias, 2022: Assessment and calibration of ERA5 severe winds in the Atlantic Ocean using satellite data. Remote Sens., 14, 4918, https://doi.org/10.3390/rs14194918.

    • Search Google Scholar
    • Export Citation
  • Collino, E., P. Bonelli, and L. Gilli, 2009: ST-AR (STorm-Archive): A project developed to assess the ground effects of severe convective storms in the Po Valley. Atmos. Res., 93, 483489, https://doi.org/10.1016/j.atmosres.2008.10.021.

    • Search Google Scholar
    • Export Citation
  • Comin, A. N., M. M. Miglietta, U. Rizza, O. C. Acevedo, and G. A. Degrazia, 2015: Investigation of sea-breeze convergence in Salento Peninsula (southeastern Italy). Atmos. Res., 160, 6879, https://doi.org/10.1016/j.atmosres.2015.03.010.

    • Search Google Scholar
    • Export Citation
  • Cornes, R. C., G. van den Schrier, E. J. M. van den Besselaar, and P. D. Jones, 2018: An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos., 123, 93919409, https://doi.org/10.1029/2017JD028200.

    • Search Google Scholar
    • Export Citation
  • Da Silva, N. A., and J. O. Haerter, 2023: The precipitation characteristics of mesoscale convective systems over Europe. J. Geophys. Res. Atmos., 128, e2023JD039045, https://doi.org/10.1029/2023JD039045.

    • Search Google Scholar
    • Export Citation
  • Davolio, S., A. Volonté, A. Manzato, A. Pucillo, A. Cicogna, and M. E. Ferrario, 2016: Mechanisms producing different precipitation patterns over north-eastern Italy: Insights from HyMeX-SOP1 and previous events. Quart. J. Roy. Meteor. Soc., 142, 188205, https://doi.org/10.1002/qj.2731.

    • Search Google Scholar
    • Export Citation
  • del Moral, A., M. del Carmen Llasat, and T. Rigo, 2017: Identification of anomalous motion of thunderstorms using daily rainfall fields. Atmos. Res., 185, 92100, https://doi.org/10.1016/j.atmosres.2016.11.001.

    • Search Google Scholar
    • Export Citation
  • del Moral, A., M. de Carmen Llasat, and T. Rigo, 2020: Connecting flash flood events with radar-derived convective storm characteristics on the northwestern Mediterranean coast: Knowing the present for better future scenarios adaptation. Atmos. Res., 238, 104863, https://doi.org/10.1016/j.atmosres.2020.104863.

    • Search Google Scholar
    • Export Citation
  • Enno, S.-E., G. Anderson, and J. Sugier, 2016: ATDnet detection efficiency and cloud lightning detection characteristics from comparison with the HyLMA during HyMeX SOP1. J. Atmos. Oceanic. Technol., 33, 18991911, https://doi.org/10.1175/JTECH-D-15-0256.1.

    • Search Google Scholar
    • Export Citation
  • Enno, S.-E., J. Sugier, R. Alber, and M. Seltzer, 2020: Lightning flash density in Europe based on 10 years of ATDnet data. Atmos. Res., 235, 104769, https://doi.org/10.1016/j.atmosres.2019.104769.

    • Search Google Scholar
    • Export Citation
  • Fairman, J. G., Jr., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2017: Climatology of size, shape, and intensity of precipitation features over Great Britain and Ireland. J. Hydrometeor., 18, 15951615, https://doi.org/10.1175/JHM-D-16-0222.1.

    • Search Google Scholar
    • Export Citation
  • Feudale, L., and A. Manzato, 2014: Cloud-to-ground lightning distribution and its relationship with orography and anthropogenic emissions in the Po Valley. J. Appl. Meteor. Climatol., 53, 26512670, https://doi.org/10.1175/JAMC-D-14-0037.1.

    • Search Google Scholar
    • Export Citation
  • Fibbi, L., M. Chiesi, M. Moriondo, M. Bindi, G. Chirici, D. Papale, B. Gozzini, and F. Maselli, 2016: Correction of a 1 km daily rainfall dataset for modelling forest ecosystem processes in Italy. Meteor. Appl., 23, 294303, https://doi.org/10.1002/met.1554.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and F. A. Isotta, 2019: Ensemble spatial precipitation analysis from rain guage data: Methodology and application in the European Alps. J. Geophys. Res. Atmos., 124, 57575778, https://doi.org/10.1029/2018JD030004.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Search Google Scholar
    • Export Citation
  • Godart, A., S. Anquetin, E. Leblois, and J.-D. Creutin, 2011: The contribution of orographically driven banded precipitation to the rainfall climatology of a Mediterranean region. J. Appl. Meteor. Climatol., 50, 22352246, https://doi.org/10.1175/JAMC-D-10-05016.1.

    • Search Google Scholar
    • Export Citation
  • González-Alemán, J. J., D. Insua-Costa, E. Bazile, S. González-Herrero, M. M. Miglietta, P. Groenemeijer, and M. G. Donat, 2023: Anthropogenic warming had a crucial role in triggering the historic and destructive Mediterranean derecho in summer 2022. Bull. Amer. Meteor. Soc., 104, E1526E1532, https://doi.org/10.1175/BAMS-D-23-0119.1.

    • Search Google Scholar
    • Export Citation
  • Güttler, I., I. Stepanov, Č. Branković, G. Nikulin, and C. Jones, 2015: Impact of horizontal resolution on precipitation in complex orography simulated by the regional climate model RCA3. Mon. Wea. Rev., 143, 36103627, https://doi.org/10.1175/MWR-D-14-00302.1.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Holzer, A. M., T. M. E. Schreiner, and T. Púčik, 2018: A forensic reanalysis of one of the deadliest European tornadoes. Nat. Hazards Earth Syst. Sci., 18, 15551565, https://doi.org/10.5194/nhess-18-1555-2018.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and J. Tan, 2020a: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Tech. Rep., 97 pp., https://gpm.nasa.gov/sites/default/files/2023-07/IMERG_TechnicalDocumentation_final_230713.pdf.

  • Huffman, G. J., and Coauthors, 2020b: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) Algorithm Theoretical Basis Doc. (ATBD), version 6, 39 pp., https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf.

  • Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The operational weather radar network in Europe. Bull. Amer. Meteor. Soc., 95, 897907, https://doi.org/10.1175/BAMS-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A., and R. Thompson, 2022: Reconciling the differences between radar and rain gauges, both are correct, but radar is usually more representative. ERAD Conf., Locarno, Switzerland, Federal Office of Meteorology and Climatology MeteoSwiss and L’École Polytechnique Fédérale de Lausanne, 118, https://www.erad2022.ch/_files/ugd/25a7b1_23b223c508be440ca402c5a29bba166e.pdf.

  • Isotta, F. A., and Coauthors, 2014: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol., 34, 16571675, https://doi.org/10.1002/joc.3794.

    • Search Google Scholar
    • Export Citation
  • Jansa, A., and Coauthors, 2014: MEDEX: A general overview. Nat. Hazards Earth Syst. Sci., 14, 19651984, https://doi.org/10.5194/nhess-14-1965-2014.

    • Search Google Scholar
    • Export Citation
  • Katona, B., P. Markowski, C. Alexander, and S. Benjamin, 2016: The influence of topography on convective storm environments in the eastern United States as deduced from the HRRR. Wea. Forecasting, 31, 14811490, https://doi.org/10.1175/WAF-D-16-0038.1.

    • Search Google Scholar
    • Export Citation
  • Klok, E. J., and A. M. G. Klein Tank, 2009: Updated and extended European dataset of daily climate observations. Int. J. Climatol., 29, 11821191, https://doi.org/10.1002/joc.1779.

    • Search Google Scholar
    • Export Citation
  • Kotroni, V., and K. Lagouvardos, 2016: Lightning in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Lett., 11, 034006, https://doi.org/10.1088/1748-9326/11/3/034006.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunz, M., U. Blahak, J. Handwerker, M. Schmidberger, H. Jürgen Punge, S. Mohr, E. Fluck, and K. M. Bedka, 2018: The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts, and meteorological conditions. Quart. J. Roy. Meteor. Soc., 144, 231250, https://doi.org/10.1002/qj.3197.

    • Search Google Scholar
    • Export Citation
  • Llasat, M. C., and M. Puigcerver, 1997: Total rainfall and convective rainfall in Catalonia, Spain. Int. J. Climatol., 17, 16831695, https://doi.org/10.1002/(SICI)1097-0088(199712)17:15<1683::AID-JOC220>3.0.CO;2-Q.

    • Search Google Scholar
    • Export Citation
  • Llasat, M. C., R. Marcos, M. Turco, J. Gilabert, and M. Llasat-Botija, 2016: Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. J. Hydrol., 541, 2437, https://doi.org/10.1016/j.jhydrol.2016.05.040.

    • Search Google Scholar
    • Export Citation
  • Llasat, M. C., M. del Moral, M. Cortès, and T. Rigo, 2021: Convective precipitation trends in the Spanish Mediterranean region. Atmos. Res., 257, 105581, https://doi.org/10.1016/j.atmosres.2021.105581.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2010: The spatial and temporal distribution of organized convective structures over the northeast and their ambient conditions. Mon. Wea. Rev., 138, 44564474, https://doi.org/10.1175/2010MWR3463.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2014: Comparison of ODYSSEY precipitation composites to SYNOP rain gauges and ECMWF model. ECMWF Tech. Memo. 717, 17 pp.

  • Manzato, A., S. Serafin, M. M. Miglietta, D. Krishbaum, and W. Schultz, 2022: A pan-alpine climatology of lightning and convection initiation. Mon. Wea. Rev., 150, 22132230, https://doi.org/10.1175/MWR-D-21-0149.1.

    • Search Google Scholar
    • Export Citation
  • Mehta, A. V., and S. Yang, 2008: Precipitation climatology over Mediterranean Basin from ten years of TRMM measurements. Adv. Geosci., 17, 8791, https://doi.org/10.5194/adgeo-17-87-2008.

    • Search Google Scholar
    • Export Citation
  • Mohr, S., J. Wandell, S. Lenggenhager, and O. Martius, 2019: Relationship between atmospheric blocking and warm-season thunderstorms over western and central Europe. Quart. J. Roy. Meteor. Soc., 145, 30403056, https://doi.org/10.1002/qj.3603.

    • Search Google Scholar
    • Export Citation
  • Mohr, S., and Coauthors, 2020: The role of large-scale dynamics in an exceptional sequence of severe thunderstorms in Europe May–June 2018. Wea. Climate Dyn., 1, 325348, https://doi.org/10.5194/wcd-1-325-2020.

    • Search Google Scholar
    • Export Citation
  • Navarro, A., E. García-Ortega, A. Merino, J. L. Sánchez, C. Kummerow, and F. J. Tapiador, 2019: Assessment of IMERG precipitation estimates over Europe. Remote Sens., 11, 2470, https://doi.org/10.3390/rs11212470.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., E. van den Besselaar, G. van der Schrier, J. Meirink, E. van der Plas, and H. Leijnse, 2022: EURADCLIM: The European climatological gauge-adjusted radar precipitation dataset (1-h accumulations). KNMI Data Platform, accessed 7 November 2023, https://doi.org/10.21944/7ypj-wn68.

  • Overeem, A., E. van den Besselaar, G. van der Schrier, J. F. Meirink, E. van der Plas, and H. Leijnse, 2023: EURADCLIM: The European climatological high-resolution gauge-adjusted radar precipitation dataset. Earth Syst. Sci. Data, 15, 14411464, https://doi.org/10.5194/essd-15-1441-2023.

    • Search Google Scholar
    • Export Citation
  • Paccagnella, T., S. Tibaldi, R. Buizza, and S. Scoccianti, 1992: High-resolution numerical modelling of convective precipitation over northern Italy. Meteor. Atmos. Phys., 50, 143163, https://doi.org/10.1007/BF01025510.

    • Search Google Scholar
    • Export Citation
  • Park, S., M. Berenguer, and D. Sempere-Torres, 2019: Long-term analysis of gauge-adjusted radar rainfall accumulations at European scale. J. Hydrol., 573, 768777, https://doi.org/10.1016/j.jhydrol.2019.03.093.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. C. Knievel, 2005: Do meteorologists suppress thunderstorms?: Radar-derived statistics and the behavior of moist convection. Bull. Amer. Meteor. Soc., 86, 341358, https://doi.org/10.1175/BAMS-86-3-341.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., and Coauthors, 2019: High resolution climate precipitation analysis for north-central Italy, 1961–2015. Climate Dyn., 52, 34353453, https://doi.org/10.1007/s00382-018-4337-6.

    • Search Google Scholar
    • Export Citation
  • Peura, M., M. Martet, A. Huuskonen, L. Delobbe, B. Lipovscak, H. Leijnse, and E. Saltikoff, 2017: OPERA - Harmonizing the European weather radar network. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 168, https://ams.confex.com/ams/38RADAR/webprogram/Manuscript/Paper320437/AMS_OPERA_Peura_etal_2017_extended.pdf.

  • Prakash, S., A. K. Mitra, A. AghaKouchak, Z. Liu, H. Norouzi, and D. S. Pai, 2018: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol., 556, 865876, https://doi.org/10.1016/j.jhydrol.2016.01.029.

    • Search Google Scholar
    • Export Citation
  • Pucillo, A., M. M. Miglietta, K. Lombardo, and A. Manzato, 2020: Application of a simple analytical model to severe winds produced by a bow echo like storm in Northeast Italy. Meteor. Appl., 27, e1868, https://doi.org/10.1002/met.1868.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., and M. A. Uman, 2003: Lightning: Physics and Effects. 1st ed. Cambridge University Press, 687 pp.

  • Ramsauer, T., T. Weiß, and P. Marzahn, 2018: Comparison of the GPM IMERG final precipitation product to RADOLAN weather radar data over the topographically and climatically diverse Germany. Remote Sens., 10, 2029, https://doi.org/10.3390/rs10122029.

    • Search Google Scholar
    • Export Citation
  • Rashid, S. A., M. J. Iqbal, and M. A. Hussain, 2012: Impact of north-south shift of Azores high on summer precipitation over North West Europe. Int. J. Geosci., 3, 992999, https://doi.org/10.4236/ijg.2012.325099.

    • Search Google Scholar
    • Export Citation
  • Rebora, N., and Coauthors, 2013: Extreme rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeor., 14, 906922, https://doi.org/10.1175/JHM-D-12-083.1.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and Y.-L. Lin, 2006: Effect of stable layer formation over the Po Valley on the development of convection during MAP IOP-8. J. Atmos. Sci., 63, 25672584, https://doi.org/10.1175/JAS3759.1.

    • Search Google Scholar
    • Export Citation
  • Saltikoff, E., 2015: Survey on implementation of INSPIRE directive among OPERA members. OPERA Internal Rep. 7 pp.

  • Saltikoff, E., M. Kurri, H. Leijnse, S. Barbosa, and K. Stiansen, 2017: Maintenance keeps radars running. Bull. Amer. Meteor. Soc., 98, 18331840, https://doi.org/10.1175/BAMS-D-16-0095.1.

    • Search Google Scholar
    • Export Citation
  • Saltikoff, E., and Coauthors, 2019: OPERA the radar project. Atmosphere, 10, 320, https://doi.org/10.3390/atmos10060320.

  • Sanders, R. A., 1953: Blocking highs over the eastern North Atlantic Ocean and western Europe. Mon. Wea. Rev., 81, 6773, https://doi.org/10.1175/1520-0493(1953)081<0067:BHOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., A. Navarro, E. García-Ortega, A. Merino, J. L. Sánchez, C. Marcos, and C. Kummerow, 2020: The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain. J. Hydrometeor., 21, 161182, https://doi.org/10.1175/JHM-D-19-0116.1.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., and Coauthors, 2019a: A climatology of thunderstorms across Europe from a synthesis of multiple data sources. J. Climate, 32, 18131837, https://doi.org/10.1175/JCLI-D-18-0372.1.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., and Coauthors, 2019b: Derecho evolving from a mesocyclone—A study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation. Mon. Wea. Rev., 147, 22832306, https://doi.org/10.1175/MWR-D-18-0330.1.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., J. T. Allen, P. Groenemeijer, R. Edwards, H. E. Brooks, V. Chmielewski, and S.-E. Enno, 2020a: Severe convective storms across Europe and the United States. Part I: Climatology of lightning, large hail, severe wind, and tornadoes. J. Climate, 33, 10 23910 261, https://doi.org/10.1175/JCLI-D-20-0345.1.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., J. T. Allen, T. Púčik, K. A. Hoogewind, and H. E. Brooks, 2020b: Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. J. Climate, 33, 10 26310 286, https://doi.org/10.1175/JCLI-D-20-0346.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor. Climatol., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., H. Feki, P. Quintana-Seguí, and J. A. Guijarro, 2019: The SAFRAN daily gridded precipitation product in Tunisia (1979–2015). Int. J. Climatol., 39, 58305838, https://doi.org/10.1002/joc.6181.

    • Search Google Scholar
    • Export Citation
  • Trapero, L., J. Bech, and J. Lorente, 2013: Numerical modelling of heavy precipitation events over eastern Pyrenees: Analysis of orographic effects. Atmos. Res., 123, 368383, https://doi.org/10.1016/j.atmosres.2012.09.014.

    • Search Google Scholar
    • Export Citation
  • van Delden, A., 2001: The synoptic setting of thunderstorms in western Europe. Atmos. Res., 56, 89110, https://doi.org/10.1016/S0169-8095(00)00092-2.

    • Search Google Scholar
    • Export Citation
  • Wilhelm, J., S. Mohr, H. Jürgen Punge, B. Mühr, M. Schmidberger, J. E. Daniell, K. M. Bedka, and M. Kunz, 2020: Severe thunderstorms with large hail across Germany in June 2019. Weather, 76, 228237, https://doi.org/10.1002/wea.3886.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3294 2632 166
Full Text Views 2176 1961 10
PDF Downloads 567 298 3