Improving Short-Term, Near-Surface Temperature Forecasts by Integrating Weather Pattern Information into Model Output Statistics

Matthias Zech aGerman Aerospace Center, Institute of Networked Energy Systems, Stuttgart, Germany

Search for other papers by Matthias Zech in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4420-5238
and
Lueder von Bremen aGerman Aerospace Center, Institute of Networked Energy Systems, Stuttgart, Germany

Search for other papers by Lueder von Bremen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dynamical numerical weather prediction has remarkably improved over the last decades. Yet postprocessing techniques are needed to calibrate forecasts which are based on statistical and machine learning techniques. With recent advances in the derivation of year-round, large-scale atmospheric circulations, or weather regimes, the question arises of whether this information can be valuable within forecast postprocessing methods. This paper investigates this by proposing a bias correction scheme to integrate the atmospheric circulation state derived from empirical orthogonal functions, referred to as weather patterns, for deterministic short-term, near-surface temperature forecasts based on least absolute shrinkage and selection operator (LASSO) regression. We propose a computational study which first evaluates different weather pattern definitions (spatial domain) to improve temperature forecasts in Europe. As a bias could be associated with the weather pattern at the model initialization time or at the realization time of the forecast, both variants are tested in this study. We show that forecasted weather patterns with the identical spatial domain as the forecast show best skill reaching mean-square-error skill improvements of up to 3% (day ahead) or 1% (week ahead). Only considering land surface improvements in Europe, improvements of 4%–6% for day-ahead forecasts and 1%–5% for week-ahead forecasts are observable. We believe that this study not only introduces a simple yet effective tool to reduce bias in temperature forecasts but also contributes to the active discussion of how valuable weather patterns are and how to use them within forecast calibration techniques.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthias Zech, matthias.zech@dlr.de

Abstract

Dynamical numerical weather prediction has remarkably improved over the last decades. Yet postprocessing techniques are needed to calibrate forecasts which are based on statistical and machine learning techniques. With recent advances in the derivation of year-round, large-scale atmospheric circulations, or weather regimes, the question arises of whether this information can be valuable within forecast postprocessing methods. This paper investigates this by proposing a bias correction scheme to integrate the atmospheric circulation state derived from empirical orthogonal functions, referred to as weather patterns, for deterministic short-term, near-surface temperature forecasts based on least absolute shrinkage and selection operator (LASSO) regression. We propose a computational study which first evaluates different weather pattern definitions (spatial domain) to improve temperature forecasts in Europe. As a bias could be associated with the weather pattern at the model initialization time or at the realization time of the forecast, both variants are tested in this study. We show that forecasted weather patterns with the identical spatial domain as the forecast show best skill reaching mean-square-error skill improvements of up to 3% (day ahead) or 1% (week ahead). Only considering land surface improvements in Europe, improvements of 4%–6% for day-ahead forecasts and 1%–5% for week-ahead forecasts are observable. We believe that this study not only introduces a simple yet effective tool to reduce bias in temperature forecasts but also contributes to the active discussion of how valuable weather patterns are and how to use them within forecast calibration techniques.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthias Zech, matthias.zech@dlr.de
Save
  • Alerskans, E., and E. Kaas, 2021: Local temperature forecasts based on statistical post-processing of numerical weather prediction data. Meteor. Appl., 28, e2006, https://doi.org/10.1002/met.2006.

    • Search Google Scholar
    • Export Citation
  • Allen, S., C. A. T. Ferro, and F. Kwasniok, 2019: Regime-dependent statistical post-processing of ensemble forecasts. Quart. J. Roy. Meteor. Soc., 145, 35353552, https://doi.org/10.1002/qj.3638.

    • Search Google Scholar
    • Export Citation
  • Allen, S., C. A. T. Ferro, and F. Kwasniok, 2020: Recalibrating wind-speed forecasts using regime-dependent ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 146, 25762596, https://doi.org/10.1002/qj.3806.

    • Search Google Scholar
    • Export Citation
  • Barnes, C., C. M. Brierley, and R. E. Chandler, 2019: New approaches to postprocessing of multi-model ensemble forecasts. Quart. J. Roy. Meteor. Soc., 145, 34793498, https://doi.org/10.1002/qj.3632.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, V. 2009: The problem of weather prediction, considered from the viewpoints of mechanics and physics. Meteor. Z., 18, 663667, https://doi.org/10.1127/0941-2948/2009/416.

    • Search Google Scholar
    • Export Citation
  • Björnsson, H., and S. A. Venegas, 1997: A manual for EOF and SVD analyses of climatic data. CCGCR Tech. Rep. 97-1, 112–134, http://muenchow.cms.udel.edu/classes/MAST811/eof.pdf.

  • Bougeault, P., and Coauthors, 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91, 10591072, https://doi.org/10.1175/2010BAMS2853.1.

    • Search Google Scholar
    • Export Citation
  • Büeler, D., L. Ferranti, L. Magnusson, J. F. Quinting, and C. M. Grams, 2021: Year-round sub-seasonal forecast skill for Atlantic–European weather regimes. Quart. J. Roy. Meteor. Soc., 147, 42834309, https://doi.org/10.1002/qj.4178.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Search Google Scholar
    • Export Citation
  • Cho, D., C. Yoo, B. Son, J. Im, D. Yoon, and D. H. Cha, 2022: A novel ensemble learning for post-processing of NWP Model’s next-day maximum air temperature forecast in summer using deep learning and statistical approaches. Wea. Climate Extremes, 35, 100410, https://doi.org/10.1016/j.wace.2022.100410.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., S. Corti, and M. Janousek, 2015: Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector. Quart. J. Roy. Meteor. Soc., 141, 916924, https://doi.org/10.1002/qj.2411.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., L. Magnusson, F. Vitart, and D. S. Richardson, 2018: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe? Quart. J. Roy. Meteor. Soc., 144, 17881802, https://doi.org/10.1002/qj.3341.

    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., T. Hastie, and R. Tibshirani, 2010: Regularization paths for generalized linear models via coordinate descent. J. Stat. Software, 33 (1), 122, https://doi.org/10.18637/jss.v033.i01.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, https://doi.org/10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Grams, C., L. Ferranti, and L. Magnusson, 2020: How to make use of weather regimes in extended-range predictions for Europe. ECMWF Newsletter, No. 165, ECMWF, Reading, United Kingdom, 14–19, https://www.ecmwf.int/en/newsletter/165/meteorology/how-make-use-weather-regimes-extended-range-predictions-europe.

  • Grams, C. M., R. Beerli, S. Pfenninger, I. Staffell, and H. Wernli, 2017: Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Climate Change, 7, 557562, https://doi.org/10.1038/nclimate3338.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., L. Magnusson, and E. Madonna, 2018: An atmospheric dynamics perspective on the amplification and propagation of forecast error in numerical weather prediction models: A case study. Quart. J. Roy. Meteor. Soc., 144, 25772591, https://doi.org/10.1002/qj.3353.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer, 745 pp.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 1982: A note on the use of principal components in regression. J. Roy. Stat. Soc., 31C, 300303, https://doi.org/10.2307/2348005.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., W. C. Skillman, P. J. Kocin, P. J. Wetzel, K. F. Brill, D. A. Keyser, and M. C. McCumber, 1985: Synoptic scale forecast skill and systematic errors in the MASS 2.0 model. Mon. Wea. Rev., 113, 17141737, https://doi.org/10.1175/1520-0493(1985)113<1714:SSFSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemburg, A., and A. H. Fink, 2022: Identifying causes of short-range forecast errors in maximum temperature during recent central European heatwaves using the ECMWF-IFS ensemble. Wea. Forecasting, 37, 18851902, https://doi.org/10.1175/WAF-D-22-0033.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., B. Pan, J. Xia, and Q. Duan, 2022: Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. J. Hydrol., 605, 127301, https://doi.org/10.1016/j.jhydrol.2021.127301.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Scientific Tech. Rep. 1, 52 pp., http://bobweigel.net/csi763/images/pdf/Lorenz1956.pdf.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1995: Predictability: A problem partly solved. Seminar on Predictability, Shinfield Park, Reading, ECMWF, 1–18, https://www.ecmwf.int/sites/default/files/elibrary/1995/75462-predictability-problem-partly-solved_0.pdf.

  • Luo, W., Y. Li, R. Urtasun, and R. Zemel, 2016: Understanding the effective receptive field in deep convolutional neural networks. Advances in Neural Information Processing Systems, D. Lee et al., Eds., Curran Associates, Inc., 4898–4906.

  • Messner, J. W., G. J. Mayr, and A. Zeileis, 2017: Nonhomogeneous boosting for predictor selection in ensemble postprocessing. Mon. Wea. Rev., 145, 137147, https://doi.org/10.1175/MWR-D-16-0088.1.

    • Search Google Scholar
    • Export Citation
  • Michel, C., and G. Rivière, 2011: The link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci., 68, 17301748, https://doi.org/10.1175/2011JAS3635.1.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:seiteo>2.0.co;2.

    • Search Google Scholar
    • Export Citation
  • O’Lenic, E. A., and R. E. Livezey, 1989: Relationships between systematic errors in medium range numerical forecasts and some of the principal modes of low-frequency variability of the Northern Hemisphere 700 mb circulation. Mon. Wea. Rev., 117, 12621280, https://doi.org/10.1175/1520-0493(1989)117<1262:RBSEIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 38853900, https://doi.org/10.1175/MWR-D-18-0187.1.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 2A, 275301, https://doi.org/10.3402/tellusa.v2i4.8603.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1951: The effect of Atlantic blocking action upon European climate. Tellus, 3A, 100112, https://doi.org/10.3402/tellusa.v3i2.8617.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12, 17961813, https://doi.org/10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405, https://doi.org/10.1175/BAMS-D-12-00099.1.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. S. Richardson, D. B. Parsons, and H. Wernli, 2018: Flow-dependent reliability: A path to more skillful ensemble forecasts. Bull. Amer. Meteor. Soc., 99, 10151026, https://doi.org/10.1175/BAMS-D-17-0027.1.

    • Search Google Scholar
    • Export Citation
  • Storch, H. v., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 85 pp., https://doi.org/10.1017/CBO9780511612336.

  • Stoss, L. A., and S. L. Mullen, 1995: The dependence of short-range 500-mb height forecasts on the initial flow regime. Wea. Forecasting, 10, 353368, https://doi.org/10.1175/1520-0434(1995)010<0353:TDOSRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taillardat, M., O. Mestre, M. Zamo, and P. Naveau, 2016: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics. Mon. Wea. Rev., 144, 23752393, https://doi.org/10.1175/MWR-D-15-0260.1.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., H. C. Bloomfield, R. W. Lee, L. P. Stoop, R. Blackport, J. A. Screen, and F. M. Selten, 2019: The influence of weather regimes on European renewable energy production and demand. Environ. Res. Lett., 14, 094010, https://doi.org/10.1088/1748-9326/ab38d3.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and Coauthors, 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681E699, https://doi.org/10.1175/BAMS-D-19-0308.1.

    • Search Google Scholar
    • Export Citation
  • Veldkamp, S., K. Whan, S. Dirksen, and M. Schmeits, 2021: Statistical postprocessing of wind speed forecasts using convolutional neural networks. Mon. Wea. Rev., 149, 11411152, https://doi.org/10.1175/MWR-D-20-0219.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and K.-H. Lau, 1993: Structure and seasonality of interannual and interdecadal variability of the geopotential height and temperature fields in the Northern Hemisphere troposphere. J. Climate, 6, 20632082, https://doi.org/10.1175/1520-0442(1993)006<2063:SASOIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Vol. 100, Academic Press, 704 pp.

  • Xiang, L., J. Xiang, J. Guan, L. Zhang, Z. Cao, and J. Xia, 2022: Spatiotemporal forecasting model based on hybrid convolution for local weather prediction post-processing. Front. Earth Sci., 10, 978942, https://doi.org/10.3389/feart.2022.978942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2856 2783 0
Full Text Views 1588 1570 227
PDF Downloads 278 254 29