On the Role of the Meridional Jet and Horizontal Potential Vorticity Dipole in the Iowa Derecho of 10 August 2020

Matthew H. Hitchman aDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Matthew H. Hitchman in
Current site
Google Scholar
PubMed
Close
and
Shellie M. Rowe aDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Shellie M. Rowe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 10 August 2020, a derecho caused widespread damage across Iowa and Illinois. Des Moines station data show that the arrival of the gust front was characterized by an abrupt shift to northerly flow, exceeding 22 m s−1 for ∼20 min. To test the hypothesis that this northerly jet is associated with a horizontal potential vorticity (PV) dipole in the lower troposphere, we investigated the structure of PV in the University of Wisconsin Nonhydrostatic Modeling System (UWNMS) and of absolute vorticity in High-Resolution Rapid Refresh (HRRR) forecast analyses. This structure is described here for the first time. The negative PV member coincides with the downdraft, while the positive PV member coincides with the updraft, with a northerly jet between. The westerly inflow jet descends anticyclonically in the downdraft, joining with northerly flow from the surface anticyclone. The resulting northerly outflow jet creates the trailing comma-shaped radar echo. The speed of propagation of the derecho is similar to the westerly wind maximum in the 3–5-km layer associated with the approaching synoptic cyclone, which acts as a steering level for resonant amplification. Idealized diagrams and 3D isosurfaces illustrate the commonality of the PV dipole/northerly jet structure. Differences in this structure among the three model states are related to low-level wind shear theory. The PV dipole coincides with the pattern of diabatic stretching tendency, which shifts westward and downward relative to the updraft/downdraft with increasing tilt. The PV dipole can contribute toward dynamical stability in a derecho.

Significance Statement

The purpose of this work is to investigate the structure of potential vorticity (PV) in the lower troposphere in a derecho. It is found that a northerly outflow jet occurs between an east–west-oriented horizontal PV dipole, which is described here for the first time. The negative PV member coincides with the downdraft and is inertially unstable, while the positive PV member coincides with the updraft. This work contributes toward the theory of resonant structures and longevity. The 3–5-km westerly inflow layer constitutes a steering level, which controls propagation speed despite differences in structure. The degree of westward tilt with height is related to the pattern of forcing by diabatic stretching in producing the PV dipole.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shellie M. Rowe, rowe1@wisc.edu

Abstract

On 10 August 2020, a derecho caused widespread damage across Iowa and Illinois. Des Moines station data show that the arrival of the gust front was characterized by an abrupt shift to northerly flow, exceeding 22 m s−1 for ∼20 min. To test the hypothesis that this northerly jet is associated with a horizontal potential vorticity (PV) dipole in the lower troposphere, we investigated the structure of PV in the University of Wisconsin Nonhydrostatic Modeling System (UWNMS) and of absolute vorticity in High-Resolution Rapid Refresh (HRRR) forecast analyses. This structure is described here for the first time. The negative PV member coincides with the downdraft, while the positive PV member coincides with the updraft, with a northerly jet between. The westerly inflow jet descends anticyclonically in the downdraft, joining with northerly flow from the surface anticyclone. The resulting northerly outflow jet creates the trailing comma-shaped radar echo. The speed of propagation of the derecho is similar to the westerly wind maximum in the 3–5-km layer associated with the approaching synoptic cyclone, which acts as a steering level for resonant amplification. Idealized diagrams and 3D isosurfaces illustrate the commonality of the PV dipole/northerly jet structure. Differences in this structure among the three model states are related to low-level wind shear theory. The PV dipole coincides with the pattern of diabatic stretching tendency, which shifts westward and downward relative to the updraft/downdraft with increasing tilt. The PV dipole can contribute toward dynamical stability in a derecho.

Significance Statement

The purpose of this work is to investigate the structure of potential vorticity (PV) in the lower troposphere in a derecho. It is found that a northerly outflow jet occurs between an east–west-oriented horizontal PV dipole, which is described here for the first time. The negative PV member coincides with the downdraft and is inertially unstable, while the positive PV member coincides with the updraft. This work contributes toward the theory of resonant structures and longevity. The 3–5-km westerly inflow layer constitutes a steering level, which controls propagation speed despite differences in structure. The degree of westward tilt with height is related to the pattern of forcing by diabatic stretching in producing the PV dipole.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shellie M. Rowe, rowe1@wisc.edu

Supplementary Materials

    • Supplemental Materials (ZIP 1.0392 MB)
Save
  • Adams-Selin, R. D., 2020: Impact of convectively generated low-frequency gravity waves on evolution of mesoscale convective systems. J. Atmos. Sci., 77, 34413460, https://doi.org/10.1175/JAS-D-19-0250.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., and R. H. Johnson, 2013: Examination of gravity waves associated with the 13 March 2003 bow echo. Mon. Wea. Rev., 141, 37353756, https://doi.org/10.1175/MWR-D-12-00343.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Atkins, N. T., and M. St. Laurent, 2009: Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Wea. Rev., 137, 14971513, https://doi.org/10.1175/2008MWR2649.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Campbell, M. A., A. E. Cohen, M. C. Coniglio, A. R. Dean, S. F. Corfidi, S. J. Corfidi, and C. M. Mead, 2017: Structure and motion of severe-wind-producing mesoscale convective systems and derechos in relation to the mean wind. Wea. Forecasting, 32, 423439, https://doi.org/10.1175/WAF-D-16-0060.1.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., and S. L. Gray, 2009: Horizontal potential vorticity dipoles on the convective storm scale. Quart. J. Roy. Meteor. Soc., 135, 13921408, https://doi.org/10.1002/qj.468.

    • Search Google Scholar
    • Export Citation
  • Chicago Weather Forecast Office, 2020: August 10, 2020: Corn Belt Derecho. Accessed 1 June 2023, https://www.weather.gov/lot/2020aug10.

  • Coniglio, M. C., and D. J. Stensrud, 2004: Interpreting the climatology of derechos. Wea. Forecasting, 19, 595605, https://doi.org/10.1175/1520-0434(2004)019<0595:ITCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337, https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., J. H. Merritt, and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146, https://doi.org/10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the definition of “derecho”. Bull. Amer. Meteor. Soc., 97, 935949, https://doi.org/10.1175/BAMS-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704, https://doi.org/10.1175/2008JAS2819.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description. Wea. Forecasting, 37, 13711395, https://doi.org/10.1175/WAF-D-21-0151.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, C., M. L. Weisman, and L. F. Bosart, 2014: Development of an intense, warm-core mesoscale vortex associated with the 8 May 2009 “super derecho” convective event. J. Atmos. Sci., 71, 12181240, https://doi.org/10.1175/JAS-D-13-0167.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, https://doi.org/10.1175/MWR3268.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 17801807, https://doi.org/10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guastini, C. T., and L. F. Bosart, 2016: Analysis of a progressive derecho climatology and associated formation environments. Mon. Wea. Rev., 144, 13631382, https://doi.org/10.1175/MWR-D-15-0256.1.

    • Search Google Scholar
    • Export Citation
  • Harvey, B., J. Methven, C. Sanchez, and A. Schäfler, 2020: Diabatic generation of negative potential vorticity and its impact on the North Atlantic jet stream. Quart. J. Roy. Meteor. Soc., 146, 14771497, https://doi.org/10.1002/qj.3747.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS), Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, https://doi.org/10.1175/JAS3963.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2011: The Spectral Ice Habit Prediction System (SHIPS), Part IV: Box model simulations of the habit-dependent aggregation process. J. Atmos. Sci., 68, 11421161, https://doi.org/10.1175/2011JAS3667.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1990: On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47, 20212031, https://doi.org/10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hernandez-Duenas, G., L. M. Smith, and S. N. Stechmann, 2014: Investigation of Boussinesq dynamics using intermediate models based on wave–vertical interactions. J. Fluid Mech., 747, 247287, https://doi.org/10.1017/jfm.2014.138.

    • Search Google Scholar
    • Export Citation
  • Hinrichs, G., 1888: Tornadoes and derechos. Amer. Meteor. J., 5, 341349.

  • Hitchman, M. H., and S. M. Rowe, 2017: On the similarity of lower stratospheric potential vorticity dipoles above tropical and midlatitude deep convection. J. Atmos. Sci., 74, 25932613, https://doi.org/10.1175/JAS-D-16-0239.1.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and S. M. Rowe, 2019: On the structure and formation of UTLS PV dipole/jetlets in tropical cyclones by convective momentum surge. Mon. Wea. Rev., 147, 41074125, https://doi.org/10.1175/MWR-D-18-0232.1.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and S. M. Rowe, 2021: On the formation of tropopause folds and constituent gradient enhancement near westerly jets. J. Atmos. Sci., 78, 20572074, https://doi.org/10.1175/JAS-D-20-0013.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Elsevier Science, 532 pp.

  • Houze, R. A. Jr., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and D. J. Raymond, 1995: Simulation of a mature mesoscale convective system using a nonlinear balance model. J. Atmos. Sci., 52, 161175, https://doi.org/10.1175/1520-0469(1995)052<0161:SOAMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, https://doi.org/10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598, https://doi.org/10.1175/2011JAS3577.1.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and J. B. Klemp, 1979: The effects of terrain shape on nonlinear hydrostatic mountain waves. J. Fluid Mech., 95, 241261, https://doi.org/10.1017/S0022112079001452.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp.

  • Lin, Y.-L., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43, 4049, https://doi.org/10.1175/1520-0469(1986)043<0040:TDOANA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., G. M. Lackmann, and M. D. Parker, 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 33163338, https://doi.org/10.1175/2009MWR2895.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley and Sons, 407 pp.

  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Muraki, D. J., and C. Snyder, 2007: Vortex dipoles for surface quasigeostrophic models. J. Atmos. Sci., 64, 29612967, https://doi.org/10.1175/JAS3958.1.

    • Search Google Scholar
    • Export Citation
  • Oertel, A., M. Boettcher, H. Joos, M. Sprenger, and H. Wernli, 2020: Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for large-scale dynamics. Wea. Climate Dyn., 1, 127153, https://doi.org/10.5194/wcd-1-127-2020.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., D. R. Durran, and M. L. Weisman, 2000: The influence of convective thermal forcing on the three-dimensional circulation around squall lines. J. Atmos. Sci., 57, 2945, https://doi.org/10.1175/1520-0469(2000)057<0029:TIOCTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II. Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 14981529, https://doi.org/10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Search Google Scholar
    • Export Citation
  • Prince, K. C., and C. Evans, 2022: Convectively generated negative potential vorticity enhancing the jet stream through an inverse energy cascade during the extratropical transition of Hurricane Irma. J. Atmos. Sci., 79, 29012918, https://doi.org/10.1175/JAS-D-22-0094.1.

    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, https://doi.org/10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., G. L. Wagner, and W. R. Young, 2018: Stimulated generation: Extraction of energy from balanced flow by near-inertial waves. J. Fluid Mech., 847, 417451, https://doi.org/10.1017/jfm.2018.308.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowe, S. M., and M. H. Hitchman, 2015: On the role of inertial instability in stratosphere troposphere exchange near midlatitude cyclones. J. Atmos. Sci., 72, 21312151, https://doi.org/10.1175/JAS-D-14-0210.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, S. M., and M. H. Hitchman, 2016: On the relationship between inertial instability, poleward momentum surges, and jet intensifications near midlatitude cyclones. J. Atmos. Sci., 73, 22992315, https://doi.org/10.1175/JAS-D-15-0183.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, S. M., and M. H. Hitchman, 2020: Rapid destruction of a stratospheric potential vorticity anomaly by convectively induced inertial instability during the southern Wisconsin extreme flooding event of 20 August 2018. Mon. Wea. Rev., 148, 43974414, https://doi.org/10.1175/MWR-D-19-0213.1.

    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2013: Squall-line intensification via hydrometeor recirculation. J. Atmos. Sci., 70, 20122031, https://doi.org/10.1175/JAS-D-12-0266.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., and T. Satomura, 2000: The gravity wave response in the troposphere around deep convection. J. Meteor. Soc. Japan, 78, 789801, https://doi.org/10.2151/jmsj1965.78.6_789.

    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889, https://doi.org/10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., D. J. Muraki, R. Plougonven, and F. Zhang, 2007: Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci., 64, 44174431, https://doi.org/10.1175/2007JAS2351.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., R. Plougonven, and D. J. Muiraki, 2009: Mechanisms for spontaneous gravity wave generation within a dipole vortex. J. Atmos. Sci., 66, 34643478, https://doi.org/10.1175/2009JAS3147.1.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1992a: A non-hydrostatic mesoscale model designed to simulate scale interaction. Mon. Wea. Rev., 120, 13421359, https://doi.org/10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1992b: An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone. Meteor. Atmos. Phys., 49, 229254, https://doi.org/10.1007/BF01025409.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1982: The Colorado State University three-dimensional cloud/mesoscale model-1982, Part I: General theoretical framework and sensitivity experiments. J. Rech. Atmos., 16, 185219.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, C. A. Davis, and N. T. Atkins, 2006: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 28132829, https://doi.org/10.1175/MWR3216.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., F. Zhang, and C. Snyder, 2009: Generation and propagation of inertia-gravity waves from vortex dipoles and jets. J. Atmos. Sci., 66, 12941314, https://doi.org/10.1175/2008JAS2830.1.

    • Search Google Scholar
    • Export Citation
  • Weijenborg, C., J. M. Chagnon, P. Friederichs, S. L. Gray, and A. Hense, 2017: Coherent evolution of potential vorticity anomalies associated with deep moist convection. Quart. J. Roy. Meteor. Soc., 143, 12541267, https://doi.org/10.1002/qj.3000.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, https://doi.org/10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670, https://doi.org/10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. F. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803, https://doi.org/10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Evans, and L. Bosart, 2013: The 8 May 2009 superderecho: Analysis of a real-time explicit convective forecast. Wea. Forecasting, 28, 863892, https://doi.org/10.1175/WAF-D-12-00023.1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, and Y. Wang, 2015: The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci., 72, 19631986, https://doi.org/10.1175/JAS-D-14-0209.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2297 2154 0
Full Text Views 1287 1236 215
PDF Downloads 271 206 23