Doppler Circulation and Areal Contraction Rate as Detected and Measured by a Phased-Array Radar: The El Reno, Oklahoma, Tornado of 31 May 2013

Vincent T. Wood NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Vincent T. Wood in
Current site
Google Scholar
PubMed
Close
,
Robert P. Davies-Jones NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Robert P. Davies-Jones in
Current site
Google Scholar
PubMed
Close
,
Jeffrey C. Snyder NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jeffrey C. Snyder in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3362-4461
, and
Larry J. Hopper Jr. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Larry J. Hopper Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A single-Doppler technique is developed to utilize data acquired by a phased-array radar that derives observed circulations and areal contraction rates through analyses of circuits at constant radii around the circulation center of a powerful tornadic supercell near El Reno, Oklahoma, on 31 May 2013. Since the rapid-scan, phased-array radar measures only the component of 3D flow in the radar viewing direction, velocity normal to the beam is set to zero to enable the calculation of circulations and areal contraction rates of circles within a surface of constant elevation angle. To obtain reliable standard measures of vortex strength, mean Doppler velocities are bilinearly interpolated to points on circles of specified radii concentric with circulation centers. The Doppler circulations around and material contractions of these circles are then calculated. Circulation is large and flow is convergent just prior to tornado formation. At its maximum size and intensity, the circulation of the tornado was very large, 9 × 105 m2 s−1 at a height of 1.5 km. As the tornado’s size increased, the divergence within it increased. During the tornado’s mature stage, areal rates of vortex core change from expansion to contraction to expansion over a period of 12 min. The use of rapid volumetric updates of approximately 1 min (or faster) available with phased-array radar (PAR) technology to track significant Doppler circulations and areal contraction rates may provide indications of imminent tornadogenesis and important updates of tornadoes in progress, though much future work remains to quantify any potential warning implications.

Significance Statement

This paper uses phased-array radar data that can fully scan a thunderstorm every 60–90 s and radar-estimated kinematic parameters to examine the rapidly evolving characteristics of a large tornado near El Reno, Oklahoma, on 31 May 2013. This tornado is the widest on record. We observed large circulation and convergent flow just prior to the tornado and more divergent flow in the tornado as its size increased. This investigation indicates that phased-array radar and circulation estimates could become useful operational tools.

Davies-Jones: Emeritus.

Wood: Retired.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeffrey C. Snyder, Jeffrey.Snyder@noaa.gov

Abstract

A single-Doppler technique is developed to utilize data acquired by a phased-array radar that derives observed circulations and areal contraction rates through analyses of circuits at constant radii around the circulation center of a powerful tornadic supercell near El Reno, Oklahoma, on 31 May 2013. Since the rapid-scan, phased-array radar measures only the component of 3D flow in the radar viewing direction, velocity normal to the beam is set to zero to enable the calculation of circulations and areal contraction rates of circles within a surface of constant elevation angle. To obtain reliable standard measures of vortex strength, mean Doppler velocities are bilinearly interpolated to points on circles of specified radii concentric with circulation centers. The Doppler circulations around and material contractions of these circles are then calculated. Circulation is large and flow is convergent just prior to tornado formation. At its maximum size and intensity, the circulation of the tornado was very large, 9 × 105 m2 s−1 at a height of 1.5 km. As the tornado’s size increased, the divergence within it increased. During the tornado’s mature stage, areal rates of vortex core change from expansion to contraction to expansion over a period of 12 min. The use of rapid volumetric updates of approximately 1 min (or faster) available with phased-array radar (PAR) technology to track significant Doppler circulations and areal contraction rates may provide indications of imminent tornadogenesis and important updates of tornadoes in progress, though much future work remains to quantify any potential warning implications.

Significance Statement

This paper uses phased-array radar data that can fully scan a thunderstorm every 60–90 s and radar-estimated kinematic parameters to examine the rapidly evolving characteristics of a large tornado near El Reno, Oklahoma, on 31 May 2013. This tornado is the widest on record. We observed large circulation and convergent flow just prior to the tornado and more divergent flow in the tornado as its size increased. This investigation indicates that phased-array radar and circulation estimates could become useful operational tools.

Davies-Jones: Emeritus.

Wood: Retired.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeffrey C. Snyder, Jeffrey.Snyder@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 17.106 MB)
Save
  • Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, Storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 7297, https://doi.org/10.1175/MWR-2855.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, R. L. Tanamachi, S. Frasier, and A. L. Pazmany, 2007: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135, 475506, https://doi.org/10.1175/MWR3295.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, J. C. Snyder, and J. B. Houser, 2016: Doppler radar observations of anticyclonic tornadoes in cyclonically rotating, right-moving supercells. Mon. Wea. Rev., 144, 15911616, https://doi.org/10.1175/MWR-D-15-0304.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2018: The multiple-vortex structure of the El Reno, Oklahoma, tornado on 31 May 2013. Mon. Wea. Rev., 146, 24832502, https://doi.org/10.1175/MWR-D-18-0073.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2019: Tornadogenesis and early tornado evolution in the El Reno, Oklahoma, supercell on 31 May 2013. Mon. Wea. Rev., 147, 20452066, https://doi.org/10.1175/MWR-D-18-0338.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1998: Nomogram for aiding the interpretation of tornadic vortex signatures measured by Doppler radar. Wea. Forecasting, 13, 505512, https://doi.org/10.1175/1520-0434(1998)013<0505:NFATIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., L. R. Lemon, and R. A. Brown, 1975: Tornado characteristics revealed by Doppler radar. Geophys. Res. Lett., 2, 183184, https://doi.org/10.1029/GL002i005p00183.

    • Search Google Scholar
    • Export Citation
  • Burggraf, O. R., and M. R. Foster, 1977: Continuation or breakdown in tornado-like vortices. J. Fluid Mech., 80, 685703, https://doi.org/10.1017/S0022112077002420.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., M. J. Carpenter, and C. D. Burghart, 1985: Doppler radar sampling limitations in convective storms. J. Atmos. Oceanic Technol., 2, 357361, https://doi.org/10.1175/1520-0426(1985)002<0357:DRSLIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., S. D. Smith, J. N. Chrisman, R. E. Saffle, R. W. Hall, and R. J. Vogt, 2013: WSR-88D radar projects – 2013 update. 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 6B.1, https://ams.confex.com/ams/93Annual/webprogram/Paper221461.html.

  • Davies-Jones, R., 1993: Useful, formulas for computing divergence, vorticity, and their errors from three or more stations. Mon. Wea. Rev., 121, 713725, https://doi.org/10.1175/1520-0493(1993)121<0713:UFFCDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497, https://doi.org/10.1175/2007JAS2516.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221, https://doi.org/10.1175/0065-9401-28.50.167.

  • Davies-Jones, R., V. T. Wood, and E. N. Rasmussen, 2020: Doppler circulation as a fairly range-insensitive far-field tornado detection and precursor parameter. J. Atmos. Oceanic Technol., 37, 11171133, https://doi.org/10.1175/JTECH-D-19-0116.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1973: The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci., 30, 14271430, https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2nd ed. E. Kessler, Ed., University of Oklahoma Press, 197–236.

  • Davies-Jones, R. P., and V. T. Wood, 2006: Simulated Doppler velocity signatures of evolving tornado-like vortices. J. Atmos. Oceanic Technol., 23, 10291048, https://doi.org/10.1175/JTECH1903.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, https://doi.org/10.1175/MWR2934.1.

    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., 1976: The Ceaseless Wind. McGraw-Hill, 579 pp.

  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum windspeeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340, https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, https://doi.org/10.1175/MWR-D-13-00101.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, https://doi.org/10.1175/MWR-D-14-00349.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1959: Detailed analysis of the Fargo tornadoes of June 20, 1957. Severe Local Storms Project, University of Chicago Tech. Rep. 5, 98 pp.

  • Golden, J. H., 1971: Waterspouts and tornadoes over South Florida. Mon. Wea. Rev., 99, 146154, https://doi.org/10.1175/1520-0493(1971)099<0146:WATOSF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golden, J. H., and D. Purcell, 1978: Airflow characteristics around the Union City tornado. Mon. Wea. Rev., 106, 2228, https://doi.org/10.1175/1520-0493(1978)106<0022:ACATUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffin, C. B., D. J. Bodine, J. M. Kurdzo, A. Mahre, and R. D. Palmer, 2019: High-temporal resolution observations of the 27 May 2015 Canadian, Texas, tornado using the Atmospheric Imaging Radar. Mon. Wea. Rev., 147, 873891, https://doi.org/10.1175/MWR-D-18-0297.1.

    • Search Google Scholar
    • Export Citation
  • Hatzis, J. J., and K. E. Klockow-McClain, 2022: A spatiotemporal perspective on the 31 May 2013 tornado evacuation in the Oklahoma City metropolitan area. Wea. Climate Soc., 14, 721735, https://doi.org/10.1175/WCAS-D-21-0106.1.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed phased-array radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed phased array radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P., D. LaDue, D. M. Kingfield, and R. Hoffman, 2015: Tornado warning decisions using phased-array radar data. Wea. Forecasting, 30, 5778, https://doi.org/10.1175/WAF-D-14-00042.1.

    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., Jr., 1959: History and measurement of the two major Scottsbluff tornadoes of 27 June 1955. Bull. Amer. Meteor. Soc., 40, 117133, https://doi.org/10.1175/1520-0477-40.3.117.

    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., Jr., 1960: Wind speed and air flow patterns in the Dallas tornado of April 2, 1957. Mon. Wea. Rev., 88, 167180, https://doi.org/10.1175/1520-0493(1960)088<0167:WSAAFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing characteristics of tornadic and nontornadic supercell storms from composite mean analyses of radar observations. Mon. Wea. Rev., 148, 50155040, https://doi.org/10.1175/MWR-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, K. Thiem, J. Snyder, D. Reif, and Z. Wienhoff, 2022: Additional evaluation of the spatiotemporal evolution of rotation during tornadogenesis using rapid-scan mobile radar observations. Mon. Wea. Rev., 150, 16391666, https://doi.org/10.1175/MWR-D-21-0227.1.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and M. M. French, 2022: The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011–20. Wea. Forecasting, 37, 283301, https://doi.org/10.1175/WAF-D-21-0127.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2022: Science applications of phased array radars. Bull. Amer. Meteor. Soc., 103, E2370E2390, https://doi.org/10.1175/BAMS-D-21-0173.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and M. Austin, 2015: 31 May 2013 El Reno tornadoes: Advantages of rapid-scan phased-array radar data from a warning forecaster’s perspective. Wea. Forecasting, 30, 933956, https://doi.org/10.1175/WAF-D-14-00142.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System—Integrated Information (WDSS-II). Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Search Google Scholar
    • Export Citation
  • Lapidus, L., and G. F. Pinder, 1982: Numerical Solution of Partial Differential Equations in Science and Engineering. Wiley, 677 pp.

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., D. W. Burgess, and R. A. Brown, 1978: Tornadic storm airflow and morphology derived from single-Doppler radar measurements. Mon. Wea. Rev., 106, 4861, https://doi.org/10.1175/1520-0493(1978)106<0048:TSAAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewis, W., and P. J. Perkins, 1953: Recorded pressure distribution in the outer portion of a tornado vortex. Mon. Wea. Rev., 81, 379385, https://doi.org/10.1175/1520-0493(1953)081<0379:RPDITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1958: Vortex motion in a viscous fluid. J. Meteor., 15, 108112, https://doi.org/10.1175/1520-0469(1958)015<0108:VMIAVF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maese, T., J. Melody, S. Katz, M. Olster, W. Sabin, A. Freedman, and H. Owen, 2001: Dual-use shipborne phased array radar technology and tactical environmental sensing. Proc. 2001 IEEE Conf. (Cat. No. 01CH37200), Atlanta, GA, Institute of Electrical and Electronics Engineers, 7–12, https://doi.org/10.1109/NRC.2001.922942.

  • Mahalik, M. C., B. R. Smith, K. L. Elmore, D. M. Kingfield, K. L. Ortega, and T. M. Smith, 2019: Estimates of gradients in radar moments using a linear least squares derivative technique. Wea. Forecasting, 34, 415434, https://doi.org/10.1175/WAF-D-18-0095.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 Intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, https://doi.org/10.1175/MWR-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson, and K. W. Thomas, 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, https://doi.org/10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morton, B. R., 1966: Geophysical vortices. Prog. Aerosp. Sci., 7, 145194, https://doi.org/10.1016/0376-0421(66)90008-X.

  • Murphy, A. M., and C. R. Homeyer, 2023: Comparison of radar-observed tornadic and nontornadic MCS cells using probability-matched means. J. Appl. Meteor. Climatol., 62, 13711388, https://doi.org/10.1175/JAMC-D-23-0070.1.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: Weather radar follow on-plan: Research and risk reduction to inform acquisition decisions. NOAA Oceanic and Atmospheric Research Rep., 21 pp., www.nssl.noaa.gov/publications/mpar_reports/RadarFollowOnPlan_ReporttoCongress_2020June_Final.pdf.

  • NOAA/NWS, 2013: The May 31-June 1, 2013 tornado and flash flooding event. NOAA/NWS, accessed 26 March 2023, https://www.weather.gov/oun/events-20130531.

  • NOAA/NWS/ROC, 2022: Radar techniques. NOAA/NWS, accessed 26 March 2023, https://www.roc.noaa.gov/radar-techniques.php.

  • NWS DAT, 2013: Damage assessment toolkit. Accessed 26 March 2023, https://apps.dat.noaa.gov/stormdamage/damageviewer/.

  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Palmer, R., and Coauthors, 2022: A primer on phased array radar technology for the atmospheric sciences. Bull. Amer. Meteor. Soc., 103, E2391E2416, https://doi.org/10.1175/BAMS-D-21-0172.1.

    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile Rapid-scanning X-band Polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Motion and Motion Systems. Vol. I. Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1996: Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing. Vol. 2, Fortran Numerical Recipes, 2nd ed. Cambridge University Press, 1486 pp.

  • Robinson, S. D., 2002: Utility of tactical environmental processor (TEP) as a Doppler at-sea weather radar. M.S. thesis, Dept of Meteorology, Naval Postgraduate School, 84 pp., https://apps.dtic.mil/sti/pdfs/ADA405927.pdf.

  • Rotunno, R., 2013: The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech., 45, 5984, https://doi.org/10.1146/annurev-fluid-011212-140639.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Sandmæl, T. N., and Coauthors, 2023: The tornado probability algorithm: A probabilistic machine learning tornadic circulation detection algorithm. Wea. Forecasting, 38, 445466, https://doi.org/10.1175/WAF-D-22-0123.1.

    • Search Google Scholar
    • Export Citation
  • Seimon, A., J. T. Allen, T. A. Seimon, S. J. Talbot, and D. K. Hoadley, 2016: Crowdsourcing the El Reno 2013 tornado: A new approach for collation and display of storm chaser imagery for scientific applications. Bull. Amer. Meteor. Soc., 97, 20692084, https://doi.org/10.1175/BAMS-D-15-00174.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 18611870, https://doi.org/10.1175/JAMC-D-15-0138.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, Z. B. Wienhoff, C. M. Kuster, and D. W. Reif, 2020: An analysis of an ostensible anticyclonic tornado from 9 May 2016 using high-resolution, rapid-scan radar data. Wea. Forecasting, 35, 16851712, https://doi.org/10.1175/WAF-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • Stratman, D. R., N. Yussouf, Y. Jung, T. A. Supinie, M. Xue, P. S. Skinner, and B. J. Putnam, 2020: Optimal temporal frequency of NSSL phased array radar observations for an experimental Warn-on-Forecast system. Wea. Forecasting, 35, 193214, https://doi.org/10.1175/WAF-D-19-0165.1.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, W.-C. Lee, M. Bell, and A. Pazmany, 2007: Ground-based velocity track display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999. Mon. Wea. Rev., 135, 783800, https://doi.org/10.1175/MWR3325.1.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, https://doi.org/10.1175/MWR-D-11-00142.1.

    • Search Google Scholar
    • Export Citation
  • Thiem, K. J., 2016: Rapid-scan, polarimetric, mobile, Doppler-radar observations of the formation, evolution, and structure of the El Reno Tornado of 31 May 2013. M.S. thesis, School of Meteorology, University of Oklahoma, 120 pp.

  • Trapp, R. J., 2000: A clarification of vortex breakdown and tornadogenesis. Mon. Wea. Rev., 128, 888895, https://doi.org/10.1175/1520-0493(2000)128<0888:ACOVBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, K. M. Butler, H. B. Bluestein, K. Thiem, J. Snyder, and J. Houser, 2015: Photogrammetric analysis of the 2013 El Reno tornado combined with mobile X-band polarimetric radar data. Mon. Wea. Rev., 143, 26572683, https://doi.org/10.1175/MWR-D-15-0034.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, https://doi.org/10.1175/MWR-D-15-0367.1.

    • Search Google Scholar
    • Export Citation
  • Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29, 11941204, https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Kuster, D. M. Kingfield, and Z. Kang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 2000: Oscillations in mesocyclone signatures with range owing to azimuthal radar sampling. J. Atmos. Oceanic Technol., 17, 9095, https://doi.org/10.1175/1520-0426(2000)017<0090:OIMSWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., R. A. Brown, and D. C. Dowell, 2009: Simulated WSR-88D velocity and reflectivity signatures of numerically modeled tornadoes. J. Atmos. Oceanic Technol., 26, 876893, https://doi.org/10.1175/2008JTECHA1181.1.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., R. P. Davies-Jones, and A. Shapiro, 2021: A variational method for filling in missing data in Doppler velocity fields. J. Atmos. Oceanic Technol., 38, 15151534, https://doi.org/10.1175/JTECH-D-20-0151.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517538, https://doi.org/10.1175/2009MWR2925.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 219 219 1
Full Text Views 521 521 456
PDF Downloads 257 257 179