Exploring the Potential of Strongly Coupled Lagrangian Data Assimilation in an Ocean–Atmosphere System

Luyu Sun Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Luyu Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5517-6773
,
Amit Apte Department of Data Science, Indian Institute of Science Education and Research in Pune, Pune, India
International Centre for Theoretical Sciences - TIFR, Bengaluru, India

Search for other papers by Amit Apte in
Current site
Google Scholar
PubMed
Close
,
Laura Slivinski NOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Laura Slivinski in
Current site
Google Scholar
PubMed
Close
, and
Elaine T. Spiller Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, Wisconsin

Search for other papers by Elaine T. Spiller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precise measurements of ocean surface flow velocities are essential for refining forecasts in a coupled ocean–atmosphere system. While oceanic data are generally sparse, surface drifters present an opportunity by providing detailed and frequently observed sea surface currents, which are a critical component in the dynamics at air–sea interface. Such observations could potentially address the usual data gaps in a coupled ocean–atmosphere assimilation system. In this study, we investigate the implications of assimilating drifter data within a coupled system with intermediate complexity based on a quasigeostrophic model—Modular Arbitrary-Order Ocean–Atmosphere Model (MAOOAM)—using observing system simulation experiments (OSSEs). Two main strategies for assimilating surface drifter data include the Eulerian approach, which translates Lagrangian positions into Eulerian velocity, and the fully Lagrangian method, which integrates both original fluid states and augmented drifter state variables into the system state vector. We evaluated both Lagrangian and Eulerian drifter assimilation techniques using the ensemble transform Kalman filter (ETKF) across two different coupling intensities within MAOOAM between the atmosphere and the ocean: one featuring strong interaction and the other featuring weak interaction. Our findings indicate a clear advantage of the Lagrangian method over the Eulerian, especially in estimating ocean streamfunctions and temperature. When combined with a large ensemble size and a short data assimilation (DA) window, the Lagrangian ensemble method adeptly manages atmospheric state error propagation. Additionally, as a preliminary demonstration, we evaluated a hybrid particle filter/ensemble Kalman filter (PF/EnKF) approach for Lagrangian DA in the coupled system with long DA windows, which can outperform the EnKF under specific configurations.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luyu Sun, lysun@umd.edu

Abstract

Precise measurements of ocean surface flow velocities are essential for refining forecasts in a coupled ocean–atmosphere system. While oceanic data are generally sparse, surface drifters present an opportunity by providing detailed and frequently observed sea surface currents, which are a critical component in the dynamics at air–sea interface. Such observations could potentially address the usual data gaps in a coupled ocean–atmosphere assimilation system. In this study, we investigate the implications of assimilating drifter data within a coupled system with intermediate complexity based on a quasigeostrophic model—Modular Arbitrary-Order Ocean–Atmosphere Model (MAOOAM)—using observing system simulation experiments (OSSEs). Two main strategies for assimilating surface drifter data include the Eulerian approach, which translates Lagrangian positions into Eulerian velocity, and the fully Lagrangian method, which integrates both original fluid states and augmented drifter state variables into the system state vector. We evaluated both Lagrangian and Eulerian drifter assimilation techniques using the ensemble transform Kalman filter (ETKF) across two different coupling intensities within MAOOAM between the atmosphere and the ocean: one featuring strong interaction and the other featuring weak interaction. Our findings indicate a clear advantage of the Lagrangian method over the Eulerian, especially in estimating ocean streamfunctions and temperature. When combined with a large ensemble size and a short data assimilation (DA) window, the Lagrangian ensemble method adeptly manages atmospheric state error propagation. Additionally, as a preliminary demonstration, we evaluated a hybrid particle filter/ensemble Kalman filter (PF/EnKF) approach for Lagrangian DA in the coupled system with long DA windows, which can outperform the EnKF under specific configurations.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luyu Sun, lysun@umd.edu
Save
  • Apte, A., C. K. R. T. Jones, A. M. Stuart, and J. Voss, 2008a: Data assimilation: Mathematical and statistical perspectives. Int. J. Numer. Methods Fluids, 56, 10331046, https://doi.org/10.1002/fld.1698.

    • Search Google Scholar
    • Export Citation
  • Apte, A., C. K. R. T. Jones, and A. M. Stuart, 2008b: A Bayesian approach to Lagrangian data assimilation. Tellus, 60A, 336347, https://doi.org/10.1111/j.1600-0870.2007.00295.x.

    • Search Google Scholar
    • Export Citation
  • Bailey, K., and Coauthors, 2019: Coastal mooring observing networks and their data products: Recommendations for the next decade. Front. Mar. Sci., 6, 180, https://doi.org/10.3389/fmars.2019.00180.

    • Search Google Scholar
    • Export Citation
  • Barton, N., and Coauthors, 2021: The Navy’s Earth system prediction capability: A new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth Space Sci., 8, e2020EA001199, https://doi.org/10.1029/2020EA001199.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., G. Balsamo, and T. Haiden, 2018: IFS upgrade brings more seamless coupled forecasts. ECMWF Newsletter, No. 156, ECMWF, Reading, United Kingdom, 18–22, https://www.ecmwf.int/en/newsletter/156/meteorology/ifs-upgrade-brings-more-seamless-coupled-forecasts.

  • Capodici, F., and Coauthors, 2019: Validation of HF radar sea surface currents in the Malta-Sicily Channel. Remote Sens. Environ., 225, 6576, https://doi.org/10.1016/j.rse.2019.02.026.

    • Search Google Scholar
    • Export Citation
  • Carrier, M. J., H. E. Ngodock, P. Muscarella, and S. Smith, 2016: Impact of assimilating surface velocity observations on the model sea surface height using the NCOM-4DVAR. Mon. Wea. Rev., 144, 10511068, https://doi.org/10.1175/MWR-D-14-00285.1.

    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., and Coauthors, 2019: Global in situ observations of essential climate and ocean variables at the air–sea interface. Front. Mar. Sci., 6, 419, https://doi.org/10.3389/fmars.2019.00419.

    • Search Google Scholar
    • Export Citation
  • Chen, X., R. G. Nystrom, C. A. Davis, and C. M. Zarzycki, 2021: Dynamical structures of cross-domain forecast error covariance of a simulated tropical cyclone in a convection-permitting coupled atmosphere–ocean model. Mon. Wea. Rev., 149, 4163, https://doi.org/10.1175/MWR-D-20-0116.1.

    • Search Google Scholar
    • Export Citation
  • Counillon, F., and L. Bertino, 2009: High-resolution ensemble forecasting for the Gulf of Mexico eddies and fronts. Ocean Dyn., 59, 8395, https://doi.org/10.1007/s10236-008-0167-0.

    • Search Google Scholar
    • Export Citation
  • Davies, T., 2014: Lateral boundary conditions for limited area models. Quart. J. Roy. Meteor. Soc., 140, 185196, https://doi.org/10.1002/qj.2127.

    • Search Google Scholar
    • Export Citation
  • De Cruz, L., J. Demaeyer, and S. Vannitsem, 2016: The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0. Geosci. Model Dev., 9, 27932808, https://doi.org/10.5194/gmd-9-2793-2016.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Coauthors, 2022: Coupled data assimilation at ECMWF: Current status, challenges and future developments. Quart. J. Roy. Meteor. Soc., 148, 26722702, https://doi.org/10.1002/qj.4330.

    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.

    • Search Google Scholar
    • Export Citation
  • Dong, J., L. Sun, J. A. Carton, and S. G. Penny, 2023: Improvements of Lagrangian data assimilation tested in the Gulf of Mexico. Mon. Wea. Rev., 151, 19271936, https://doi.org/10.1175/MWR-D-22-0202.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., D. Volkov, G. Goni, R. Lumpkin, and G. R. Foltz, 2017: Near-surface salinity and temperature structure observed with dual-sensor drifters in the subtropical South Pacific. J. Geophys. Res. Oceans, 122, 59525969, https://doi.org/10.1002/2017JC012894.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and Coauthors, 2021: Ocean Surface Current Multiscale Observation Mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature. Prog. Oceanogr., 193, 102531, https://doi.org/10.1016/j.pocean.2021.102531.

    • Search Google Scholar
    • Export Citation
  • Frolov, S., C. H. Bishop, T. Holt, J. Cummings, and D. Kuhl, 2016: Facilitating strongly coupled ocean–atmosphere data assimilation with an interface solver. Mon. Wea. Rev., 144, 320, https://doi.org/10.1175/MWR-D-15-0041.1.

    • Search Google Scholar
    • Export Citation
  • Goodliff, M., and S. G. Penny, 2022: Developing 4D-VAR for strongly coupled data assimilation using a coupled atmosphere–ocean quasigeostrophic model. Mon. Wea. Rev., 150, 24432458, https://doi.org/10.1175/MWR-D-21-0240.1.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., E. Källén, and S. Thorsteinsson, 1998: Sensitivity of forecast errors to initial and lateral boundary conditions. Tellus, 50A, 167185, https://doi.org/10.3402/tellusa.v50i2.14519.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., and Coauthors, 2023: Satellite remote sensing of surface winds, waves, and currents: Where are we now? Surv. Geophys., 44, 13571446, https://doi.org/10.1007/s10712-023-09771-2.

    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, A. Griffa, A. C. Poje, and M.-P. Lelong, 2014: How does drifter position uncertainty affect ocean dispersion estimates? J. Atmos. Oceanic Technol., 31, 28092828, https://doi.org/10.1175/JTECH-D-14-00107.1.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D.-T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317334, https://doi.org/10.1175/2007MWR1927.1.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., X. Luo, and D.-T. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528542, https://doi.org/10.1175/2011MWR3640.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Ide, K., L. Kuznetsov, and C. K. R. T. Jones, 2002: Lagrangian data assimilation for point vortex systems. J. Turbul., 3, N53, https://doi.org/10.1088/1468-5248/3/1/053.

    • Search Google Scholar
    • Export Citation
  • Jones, C. S., L. Sun, M. Harrison, A. Adcroft, and S. Griffies, 2024: Online 3-D particle advection in a Lagrangian vertical coordinate ocean model. 2024 Ocean Sciences Meeting, New Orleans, LA, Amer. Geophys. Union, PS14A-1998, https://agu.confex.com/agu/OSM24/meetingapp.cgi/Paper/1483124.

  • Kuznetsov, L., K. Ide, and C. K. R. T. Jones, 2003: A method for assimilation of Lagrangian data. Mon. Wea. Rev., 131, 22472260, https://doi.org/10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/10.1002/qj.2629.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., S. Frolov, B. Ménétrier, and M. Bonavita, 2018: Implicit and explicit cross-correlations in coupled data assimilation. Quart. J. Roy. Meteor. Soc., 144, 18511863, https://doi.org/10.1002/qj.3373.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. Toumi, 2018: Improved tropical cyclone intensity forecasts by assimilating coastal surface currents in an idealized study. Geophys. Res. Lett., 45, 10 01910 026, https://doi.org/10.1029/2018GL079677.

    • Search Google Scholar
    • Export Citation
  • Lima, L. N., L. P. Pezzi, S. G. Penny, and C. A. S. Tanajura, 2019: An investigation of ocean model uncertainties through ensemble forecast experiments in the southwest Atlantic Ocean. J. Geophys. Res. Oceans, 124, 432452, https://doi.org/10.1029/2018JC013919.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Wu, S. Zhang, Y. Liu, and X. Rong, 2013: Ensemble data assimilation in a simple coupled climate model: The role of ocean-atmosphere interaction. Adv. Atmos. Sci., 30, 12351248, https://doi.org/10.1007/s00376-013-2268-z.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and M. Pazos, 2007: Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 39–67, https://doi.org/10.1017/CBO9780511535901.003.

  • Majumdar, S. J., L. Magnusson, P. Bechtold, J. R. Bidlot, and J. D. Doyle, 2023: Advanced tropical cyclone prediction using the experimental global ECMWF and operational regional COAMPS-TC systems. Mon. Wea. Rev., 151, 20292048, https://doi.org/10.1175/MWR-D-22-0236.1.

    • Search Google Scholar
    • Export Citation
  • Molcard, A., L. I. Piterbarg, A. Griffa, T. M. Özgökmen, and A. J. Mariano, 2003: Assimilation of drifter observations for the reconstruction of the Eulerian circulation field. J. Geophys. Res., 108, 3056, https://doi.org/10.1029/2001JC001240.

    • Search Google Scholar
    • Export Citation
  • Molcard, A., T. M. Özgökmen, A. Griffa, L. I. Piterbarg, and T. M. Chin, 2007: Lagrangian data assimilation in ocean general circulation models. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 172–203.

  • NASA/Jet Propulsion Laboratory, 2023: Overview—Mission– NASA SWOT. Accessed 13 February 2024, https://swot.jpl.nasa.gov/mission/overview/.

  • Nuissier, O., B. Joly, B. Vié, and V. Ducrocq, 2012: Uncertainty of lateral boundary conditions in a convection-permitting ensemble: A strategy of selection for Mediterranean heavy precipitation events. Nat. Hazards Earth Syst. Sci., 12, 29933011, https://doi.org/10.5194/nhess-12-2993-2012.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T., 2013: GLAD experiment code-style drifter trajectories (low-pass filtered, 15 minute interval records), northern Gulf of Mexico near Desoto Canyon, July–October 2012. Gulf of Mexico Research Initiative Information and Data Cooperative (GRI-IDC), Harte Research Institute, Texas A&M University–Corpus Christi, accessed 7 April 2022, https://doi.org/10.7266/N7VD6WC8.

  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169ES172.

    • Search Google Scholar
    • Export Citation
  • Penny, S. G., E. Bach, K. Bhargava, C.-C. Chang, C. Da, L. Sun, and T. Yoshida, 2019: Strongly coupled data assimilation in multiscale media: Experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth Syst., 11, 18031829, https://doi.org/10.1029/2019MS001652.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, https://doi.org/10.1175/1520-0493(2001)129%3C1194:SMFSDA%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillipson, L., Y. Li, and R. Toumi, 2021: Strongly coupled assimilation of a hypothetical ocean current observing network within a regional ocean–atmosphere coupled model: An OSSE case study of Typhoon Hato. Mon. Wea. Rev., 149, 13171336, https://doi.org/10.1175/MWR-D-20-0108.1.

    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the deepwater horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Search Google Scholar
    • Export Citation
  • Rai, S., M. Hecht, M. Maltrud, and H. Aluie, 2021: Scale of oceanic eddy killing by wind from global satellite observations. Sci. Adv., 7, eabf4920, https://doi.org/10.1126/sciadv.abf4920.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Search Google Scholar
    • Export Citation
  • Rodríguez, E., M. Bourassa, D. Chelton, J. T. Farrar, D. Long, D. Perkovic-Martin, and R. Samelson, 2019: The winds and currents mission concept. Front. Mar. Sci., 6, 438, https://doi.org/10.3389/fmars.2019.00438.

    • Search Google Scholar
    • Export Citation
  • Salman, H., 2008: A hybrid grid/particle filter for Lagrangian data assimilation. I: Formulating the passive scalar approximation. Quart. J. Roy. Meteor. Soc., 134, 15391550, https://doi.org/10.1002/qj.270.

    • Search Google Scholar
    • Export Citation
  • Salman, H., L. Kuznetsov, C. K. R. T. Jones, and K. Ide, 2006: A method for assimilating Lagrangian data into a shallow-water-equation ocean model. Mon. Wea. Rev., 134, 10811101, https://doi.org/10.1175/MWR3104.1.

    • Search Google Scholar
    • Export Citation
  • Salman, H., C. K. R. T. Jones, and K. Ide, 2008: Using flow geometry for drifter deployment in Lagrangian data assimilation. Tellus, 60A, 321335, https://doi.org/10.1111/j.1600-0870.2007.00292.x.

    • Search Google Scholar
    • Export Citation
  • Sandery, P. A., P. Sakov, and L. Majewski, 2014: The impact of open boundary forcing on forecasting the east Australian current using ensemble data assimilation. Ocean Modell., 84, 111, https://doi.org/10.1016/j.ocemod.2014.09.005.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L., E. Spiller, A. Apte, and B. Sandstede, 2015: A hybrid particle–ensemble Kalman filter for Lagrangian data assimilation. Mon. Wea. Rev., 143, 195211, https://doi.org/10.1175/MWR-D-14-00051.1.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., L. J. Pratt, I. I. Rypina, M. M. Orescanin, B. Raubenheimer, J. MacMahan, and S. Elgar, 2017: Assimilating Lagrangian data for parameter estimation in a multiple-inlet system. Ocean Modell., 113, 131144, https://doi.org/10.1016/j.ocemod.2017.04.001.

    • Search Google Scholar
    • Export Citation
  • Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752759, https://doi.org/10.1002/2015GL067238.

    • Search Google Scholar
    • Export Citation
  • Stefanova, L., 2022: Description and results from UFS coupled prototypes for future global, ensemble and seasonal forecasts at NCEP. NOAA Office Note 510, 201 pp., https://repository.library.noaa.gov/view/noaa/47171.

  • Sun, L., and S. G. Penny, 2019: Lagrangian data assimilation of surface drifters in a double-gyre ocean model using the local ensemble transform Kalman filter. Mon. Wea. Rev., 147, 45334551, https://doi.org/10.1175/MWR-D-18-0406.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., S. G. Penny, and M. Harrison, 2022: Impacts of the Lagrangian data assimilation of surface drifters on estimating ocean circulation during the Gulf of Mexico grand Lagrangian deployment. Mon. Wea. Rev., 150, 949965, https://doi.org/10.1175/MWR-D-21-0123.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., L. Mu, H. F. Goessling, T. Semmler, and L. Nerger, 2021: Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model. Geophys. Res. Lett., 48, e2021GL094941, https://doi.org/10.1029/2021GL094941.

    • Search Google Scholar
    • Export Citation
  • Tondeur, M., A. Carrassi, S. Vannitsem, and M. Bocquet, 2020: On temporal scale separation in coupled data assimilation with the ensemble Kalman filter. J. Stat. Phys., 179, 11611185, https://doi.org/10.1007/s10955-020-02525-z.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and L. De Cruz, 2014: A 24-variable low-order coupled ocean–atmosphere model: OA-QG-WS v2. Geosci. Model Dev., 7, 649662, https://doi.org/10.5194/gmd-7-649-2014.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., J. Demaeyer, L. De Cruz, and M. Ghil, 2015: Low-frequency variability and heat transport in a low-order nonlinear coupled ocean–atmosphere model. Physica D, 309, 7185, https://doi.org/10.1016/j.physd.2015.07.006.

    • Search Google Scholar
    • Export Citation
  • Vernieres, G., C. K. R. T. Jones, and K. Ide, 2011: Capturing eddy shedding in the Gulf of Mexico from Lagrangian observations. Physica D, 240, 166179, https://doi.org/10.1016/j.physd.2010.06.008.

    • Search Google Scholar
    • Export Citation
  • Wu, W., A. H. Lynch, and A. Rivers, 2005: Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions. J. Climate, 18, 917933, https://doi.org/10.1175/JCLI-3293.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and K. Emanuel, 2018: Promises in air-sea fully coupled data assimilation for future hurricane prediction. Geophys. Res. Lett., 45, 13 17313 177, https://doi.org/10.1029/2018GL080970.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 247 247
PDF Downloads 159 159 159