Low-Level Mesocyclone Evolution of a Cyclic Tornadic Supercell Observed during TORUS on 17 May 2019

Martin A. Satrio Cooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
The University of Oklahoma, Norman, Oklahoma
NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Martin A. Satrio in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0866-9169
,
Michael C. Coniglio NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Michael C. Coniglio in
Current site
Google Scholar
PubMed
Close
,
Erik N. Rasmussen NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Erik N. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Conrad L. Ziegler NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
The University of Oklahoma, Norman, Oklahoma

Search for other papers by Conrad L. Ziegler in
Current site
Google Scholar
PubMed
Close
,
Daniel M. Stechman Cooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
The University of Oklahoma, Norman, Oklahoma
NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Daniel M. Stechman in
Current site
Google Scholar
PubMed
Close
, and
Anthony E. Reinhart NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Anthony E. Reinhart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This case study analyzes the 17 May 2019 cyclic, tornadic supercell from southwest Nebraska observed by the Targeted Observation by Radars and UAS of Supercells (TORUS) field experiment. Specifically, 12 multi-Doppler wind syntheses are generated over a 96-min period from 2301 UTC 17 May to 0037 UTC 18 May using two P-3 airborne radars and the ground-based NOXP research radar. Synthesized winds and reflectivity are assimilated into a diabatic Lagrangian analysis for the retrieval of thermodynamic data. The 4D wind fields are found to correlate well with observed tornadic and nontornadic periods, and several storm-scale features related to low-level mesocyclone (LLM) and near-ground rotation processes are documented. This includes vortex line arches that are a defining feature during the first EF2 tornado, followed by an occlusion process and reorganization period. During the most active tornadic period, backward trajectories reveal both inflow parcels and forward-flank parcels participate in the core of the 0–1-km rotation. While tilting of streamwise vorticity into vertical vorticity and subsequent powerful vertical stretching occurs for both inflow and forward-flank parcels, the solenoidal generation of streamwise vorticity is dominant with the latter. This resembles streamwise vorticity currents found within numerical simulations. Last, an intense left-flank convergence boundary develops coincident with the intensification of storm-relative inflow winds, with its formation and dissipation correlated with the final tornado. The 96-min analysis period with 4D kinematic and thermodynamic data makes this study one of the most detailed supercell case studies presented in the literature.

Significance Statement

A detailed analysis of a supercell that produced nine tornadoes within a 96-min period is presented. The supercell was observed by five radars, which are used to obtain information about the 3D wind, temperature, and moisture fields. Although computer simulations can provide detailed looks into supercell processes, collecting and analyzing observed supercell data of this quality is challenging and rare. We identify features within the supercell that are correlated with periods of strong and weak tornado production. Additionally, we identify the source region of air that is associated with low-level rotation in the supercell and comment on the importance of temperature gradients observed within the supercell, comparing these results to what has been found in simulations.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martin Satrio, martin.satrio@noaa.gov

Abstract

This case study analyzes the 17 May 2019 cyclic, tornadic supercell from southwest Nebraska observed by the Targeted Observation by Radars and UAS of Supercells (TORUS) field experiment. Specifically, 12 multi-Doppler wind syntheses are generated over a 96-min period from 2301 UTC 17 May to 0037 UTC 18 May using two P-3 airborne radars and the ground-based NOXP research radar. Synthesized winds and reflectivity are assimilated into a diabatic Lagrangian analysis for the retrieval of thermodynamic data. The 4D wind fields are found to correlate well with observed tornadic and nontornadic periods, and several storm-scale features related to low-level mesocyclone (LLM) and near-ground rotation processes are documented. This includes vortex line arches that are a defining feature during the first EF2 tornado, followed by an occlusion process and reorganization period. During the most active tornadic period, backward trajectories reveal both inflow parcels and forward-flank parcels participate in the core of the 0–1-km rotation. While tilting of streamwise vorticity into vertical vorticity and subsequent powerful vertical stretching occurs for both inflow and forward-flank parcels, the solenoidal generation of streamwise vorticity is dominant with the latter. This resembles streamwise vorticity currents found within numerical simulations. Last, an intense left-flank convergence boundary develops coincident with the intensification of storm-relative inflow winds, with its formation and dissipation correlated with the final tornado. The 96-min analysis period with 4D kinematic and thermodynamic data makes this study one of the most detailed supercell case studies presented in the literature.

Significance Statement

A detailed analysis of a supercell that produced nine tornadoes within a 96-min period is presented. The supercell was observed by five radars, which are used to obtain information about the 3D wind, temperature, and moisture fields. Although computer simulations can provide detailed looks into supercell processes, collecting and analyzing observed supercell data of this quality is challenging and rare. We identify features within the supercell that are correlated with periods of strong and weak tornado production. Additionally, we identify the source region of air that is associated with low-level rotation in the supercell and comment on the importance of temperature gradients observed within the supercell, comparing these results to what has been found in simulations.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martin Satrio, martin.satrio@noaa.gov
Save
  • Alford, A. A., M. I. Biggerstaff, C. L. Ziegler, D. P. Jorgensen, and G. D. Carrie, 2022: A method for correcting staggered pulse repetition time (PRT) and dual pulse repetition frequency (PRF) processor errors in research radar datasets. J. Atmos. Oceanic Technol., 39, 17631780, https://doi.org/10.1175/JTECH-D-21-0176.1.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., K. M. Butler, K. R. Flynn, and R. M. Wakimoto, 2014: An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma EF5 tornado. Bull. Amer. Meteor. Soc., 95, 15491561, https://doi.org/10.1175/BAMS-D-14-00033.1.

    • Search Google Scholar
    • Export Citation
  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, https://doi.org/10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, https://doi.org/10.1175/MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Betten, D. P., M. I. Biggerstaff, and C. L. Ziegler, 2018: Three-dimensional storm structure and low-level boundaries at different stages of cyclic mesocyclone evolution in a high-precipitation tornadic supercell. Adv. Meteor., 2018, 9432670, https://doi.org/10.1155/2018/9432670.

    • Search Google Scholar
    • Export Citation
  • Brooks, E. M., 1949: The tornado cyclone. Weatherwise, 2, 3233, https://doi.org/10.1080/00431672.1949.9930047.

  • Browning, K. A., 1968: The organization of severe local storms. Weather, 23, 429434, https://doi.org/10.1002/j.1477-8696.1968.tb03018.x.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. R. Landry, 1963: Airflow within a tornadic storm. Preprints, 10th Weather Radar Conf., Boston, MA, Amer. Meteor. Soc., 116–122.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., and C. L. Ziegler, 2016: The formation of small-scale atmospheric vortices via baroclinic horizontal shearing instability. J. Atmos. Sci., 73, 20852104, https://doi.org/10.1175/JAS-D-14-0385.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. Taszarek, and M. D. Parker, 2020: Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Wea. Forecasting, 35, 26212638 https://doi.org/10.1175/WAF-D-20-0153.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. Peters, and A. R. Wade, 2023: Supercell low-level mesocyclones: Origins of inflow and vorticity. Mon. Wea. Rev., 151, 22052232, https://doi.org/10.1175/MWR-D-22-0269.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and R. E. Jewell, 2022: SPC mesoscale analysis compared to field-project soundings: Implications for supercell environment studies. Mon. Wea. Rev., 150, 567588, https://doi.org/10.1175/MWR-D-21-0222.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 49294942, https://doi.org/10.1175/MWR-D-15-0115.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., and M. D. Parker, 2015: Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon. Wea. Rev., 143, 42444277, https://doi.org/10.1175/MWR-D-15-0072.1.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., C. L. Ziegler, and M. I. Biggerstaff, 2019: Creating a more realistic idealized supercell thunderstorm evolution via incorporation of base-state environmental variability. Mon. Wea. Rev., 147, 41774198, https://doi.org/10.1175/MWR-D-18-0447.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1982a: A new look at the vorticity equation with application to tornadogenesis. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 249252.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1982b: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 175189.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and H. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophysical Monograph Series, Vol. 79, Amer. Geophys. Union, 105114, https://doi.org/10.1029/GM079.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and P. Markowski, 2013: Lifting of ambient air by density currents in sheared environments. J. Atmos. Sci., 70, 12041215, https://doi.org/10.1175/JAS-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr. No. 28, Amer. Meteor. Soc., 126221.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 25622582, https://doi.org/10.1175/1520-0493(1997)125<2562:TAOSOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, https://doi.org/10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finley, C. A., M. Elmore, L. Orf, and B. D. Lee, 2023: Impact of the streamwise vorticity current on low-level mesocyclone development in a simulated supercell. Geophys. Res. Lett., 50, e2022GL100005, https://doi.org/10.1029/2022GL100005.

    • Search Google Scholar
    • Export Citation
  • Frame, J., P. Markowski, Y. Richardson, J. Strake, and J. Wurman, 2009: Polarimetric and dual-Doppler radar observations of the Lipscomb County, Texas, supercell thunderstorm on 23 May 2002. Mon. Wea. Rev., 137, 544561, https://doi.org/10.1175/2008MWR2425.1.

    • Search Google Scholar
    • Export Citation
  • Gray, K. T., and J. W. Frame, 2023: Investigating the development and characteristics of streamwise vorticity currents produced by outflow surges in simulated supercell thunderstorms. Mon. Wea. Rev., 151, 30893111, https://doi.org/10.1175/MWR-D-22-0309.1.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., 1971: Numerical Weather Prediction. John Wiley and Sons, 317 pp.

  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, https://doi.org/10.1175/2007MWR2285.1.

    • Search Google Scholar
    • Export Citation
  • Hosek, M. J., C. L. Ziegler, M. I. Biggerstaff, T. A. Murphy, and Z. Wang, 2023: Relation between baroclinity, horizontal vorticity, and mesocyclone evolution in the 6–7 April 2018 Monroe, Louisiana, tornadic supercell during VORTEX-SE. Mon. Wea. Rev., 151, 29492976, https://doi.org/10.1175/MWR-D-22-0313.1.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Climate Appl. Meteor., 22, 744757, https://doi.org/10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessinger, C. J., P. S. Ray, and C. E. Hane, 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci., 44, 28402865, https://doi.org/10.1175/1520-0469(1987)044<2840:TOSLOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, and J. Wurman, 2006: A dual-Doppler analysis of a nontornadic supercell observed on 12 June 2004 using ground-based Doppler radars. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 15.2, https://ams.confex.com/ams/pdfpapers/115382.pdf.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Mobile mesonet observations on 3 May 1999. Wea. Forecasting, 17, 430444, https://doi.org/10.1175/1520-0434(2002)017<0430:MMOOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, https://doi.org/10.1175/JAS-D-16-0150.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2020: What is the intrinsic predictability of tornadic supercell thunderstorms? Mon. Wea. Rev., 148, 31573180, https://doi.org/10.1175/MWR-D-20-0076.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the rapid update cycle. Wea. Forecasting, 18, 12621272, https://doi.org/10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. Rasmussen, J. Straka, R. Davies-Jones, Y. Richardson, and R. J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535, https://doi.org/10.1175/2008MWR2315.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., M. Majcen, Y. Richardson, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler On Wheels radars. Electron. J. Severe Storms Meteor., 6 (3), https://doi.org/10.55599/ejssm.v6i3.30.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, https://doi.org/10.1175/MWR-D-11-00336.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, https://doi.org/10.1175/MWR-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, and G. Bryan, 2014: The origins of vortex sheets in a simulated supercell thunderstorm. Mon. Wea. Rev., 142, 39443954, https://doi.org/10.1175/MWR-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., T. P. Hatlee, and Y. P. Richardson, 2018: Tornadogenesis in the 12 May 2010 supercell thunderstorm intercepted by VORTEX2 near Clinton, Oklahoma. Mon. Wea. Rev., 146, 36233650, https://doi.org/10.1175/MWR-D-18-0196.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, https://doi.org/10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Murdzek, S. S., P. M. Markowski, and Y. P. Richardson, 2020a: Simultaneous dual-Doppler and mobile mesonet observations of streamwise vorticity currents in three supercells. Mon. Wea. Rev., 148, 48594874, https://doi.org/10.1175/MWR-D-20-0239.1.

    • Search Google Scholar
    • Export Citation
  • Murdzek, S. S., P. M. Markowski, Y. P. Richardson, and R. L. Tanamachi, 2020b: Processes preventing the development of a significant tornado in a Colorado supercell on 26 May 2010. Mon. Wea. Rev., 148, 17531778, https://doi.org/10.1175/MWR-D-19-0288.1.

    • Search Google Scholar
    • Export Citation
  • Nixon, C. J., and J. T. Allen, 2022: Distinguishing between hodographs of severe hail and tornadoes. Wea. Forecasting, 37, 17611782, https://doi.org/10.1175/WAF-D-21-0136.1.

    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2017: How much does “backing aloft” actually impact a supercell? Wea. Forecasting, 32, 19371957, https://doi.org/10.1175/WAF-D-17-0064.1.

    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 11451164, https://doi.org/10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., D. R. Chavas, C.-Y. Su, H. Morrison, and B. E. Coffer, 2023: An analytic formula for entraining CAPE in midlatitude storm environments. J. Atmos. Sci., 80, 21652186, https://doi.org/10.1175/JAS-D-23-0003.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, https://doi.org/10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., and K. L. Sangren, 1983: Multiple-Doppler radar network design. J. Climate Appl. Meteor., 22, 14441454, https://doi.org/10.1175/1520-0450(1983)022<1444:MDRND>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. L. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625, https://doi.org/10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, and D. T. Dawson, 2020: The effect of surface drag strength on mesocyclone intensification and tornadogenesis in idealized supercell simulations. J. Atmos. Sci., 77, 16991721 https://doi.org/10.1175/JAS-D-19-0109.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, https://doi.org/10.1175/2008MWR2330.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schueth, A., C. Weiss, and J. M. L. Dahl, 2021: Comparing observations and simulations of the streamwise vorticity current and the forward-flank convergence boundary in a supercell storm. Mon. Wea. Rev., 149, 16511671, https://doi.org/10.1175/MWR-D-20-0251.1.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441, https://doi.org/10.1175/MWR3131.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, J. L. Schroeder, L. J. Wicker, and M. I. Biggerstaff, 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 37303749, https://doi.org/10.1175/MWR-D-10-05078.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, V. Venkatesh, and S. J. Frasier, 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, https://doi.org/10.1175/MWR-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices in the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8), https://doi.org/10.55599/ejssm.v2i8.13.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, M. Xue, W.-C. Lee, K. A. Orzel, S. J. Frasier, and R. M. Wakimoto, 2013: Near-surface vortex structure in a tornado and in a sub-tornado-strength convective-storm vortex observed by a mobile, W-band radar during VORTEX2. Mon. Wea. Rev., 141, 36613690, https://doi.org/10.1175/MWR-D-12-00331.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and C. Liu, 1998: The Garden City, Kansas, storm during VORTEX 95. Part II: The wall cloud and tornado. Mon. Wea. Rev., 126, 393408, https://doi.org/10.1175/1520-0493(1998)126<0393:TGCKSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., 1993: Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophysical Monograph Series, Vol. 79, Amer. Geophys. Union, 8995, https://doi.org/10.1029/GM079.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and A. Schueth, 2022: The kinematic character of forward flank outflows from the torus project. 30th Conf. on Severe Local Storms, Santa Fe, NM, Amer. Meteor. Soc., 5.3, https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407579.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. B., and A. L. Houston, 2025: Examining the impact of assimilating surface, PBL, and free atmosphere observations from TORUS on analyses and forecasts of two supercells on 8 June 2019. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-23-0247.1, in press.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 2013a: A diabatic Lagrangian technique for the analysis of convective storms. Part I: Description and validation via an observing system simulation experiment. J. Atmos. Oceanic Technol., 30, 22482265, https://doi.org/10.1175/JTECH-D-12-00194.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 2013b: A diabatic Lagrangian technique for the analysis of convective storms. Part II: Application to a radar-observed storm. J. Atmos. Oceanic Technol., 30, 22662280, https://doi.org/10.1175/JTECH-D-13-00036.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. Kennedy, and E. N. Rasmussen, 2004: A wireless network for collection and synthesis of mobile mesoscale weather observations. J. Atmos. Oceanic Technol., 21, 16591670, https://doi.org/10.1175/JTECH1678.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 768 768 768
Full Text Views 335 335 84
PDF Downloads 249 249 66