Environmental Sources of Error in the Navy ESPC MJO Forecasts and MJO Teleconnections

Stephanie S. Rushley Naval Research Laboratory Marine Meteorology Division, Monterey, California

Search for other papers by Stephanie S. Rushley in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4458-0954
,
Matthew A. Janiga Naval Research Laboratory Marine Meteorology Division, Monterey, California

Search for other papers by Matthew A. Janiga in
Current site
Google Scholar
PubMed
Close
, and
Carolyn A. Reynolds Naval Research Laboratory Marine Meteorology Division, Monterey, California

Search for other papers by Carolyn A. Reynolds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We examine the environmental conditions that lead to well- and poorly predicted MJO events in the Navy Earth System Prediction Capability (ESPC) global coupled forecast system. Individual MJO events are tracked using an MJO tracking algorithm following Chikira (2014). Good and poor forecasts are determined by how well the forecasted MJO object matches with the observed MJO objects. The primary difference between good and poor MJO forecasts is location and timing of forecasted MJO events. Good MJO forecasts capture the evolution of observed environmental moisture and low-level wind anomalies, while poor MJO forecasts do not build sufficient moisture anomalies to support the MJO’s amplifications and propagation. The poor forecasts struggle to simulate the horizontal advection and evaporation. The errors in the evaporation are likely driven by errors in the environmental and MJO-scale zonal wind anomalies. The errors in the evolution of the horizontal advection are largely driven by the evolution of the environmental wind and moisture gradient, which induces errors in the evolution of the zonal moisture advection. The effect of the good and poor MJO forecasts on the extended range MJO teleconnections is examined. It is found that MJO teleconnections are best simulated following the MJO’s enhanced convection over the Maritime Continent. There are systematic biases in the MJO-induced Rossby wave trains in the Navy ESPC, in some cases despite a good representation of the MJO. A northeastward tilt in the subtropical jet exit region is identified in the Navy ESPC and is another possible cause of these biases in the Rossby wave trains.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Rushley, stephanie.s.rushley.civ@us.navy.mil

Abstract

We examine the environmental conditions that lead to well- and poorly predicted MJO events in the Navy Earth System Prediction Capability (ESPC) global coupled forecast system. Individual MJO events are tracked using an MJO tracking algorithm following Chikira (2014). Good and poor forecasts are determined by how well the forecasted MJO object matches with the observed MJO objects. The primary difference between good and poor MJO forecasts is location and timing of forecasted MJO events. Good MJO forecasts capture the evolution of observed environmental moisture and low-level wind anomalies, while poor MJO forecasts do not build sufficient moisture anomalies to support the MJO’s amplifications and propagation. The poor forecasts struggle to simulate the horizontal advection and evaporation. The errors in the evaporation are likely driven by errors in the environmental and MJO-scale zonal wind anomalies. The errors in the evolution of the horizontal advection are largely driven by the evolution of the environmental wind and moisture gradient, which induces errors in the evolution of the zonal moisture advection. The effect of the good and poor MJO forecasts on the extended range MJO teleconnections is examined. It is found that MJO teleconnections are best simulated following the MJO’s enhanced convection over the Maritime Continent. There are systematic biases in the MJO-induced Rossby wave trains in the Navy ESPC, in some cases despite a good representation of the MJO. A northeastward tilt in the subtropical jet exit region is identified in the Navy ESPC and is another possible cause of these biases in the Rossby wave trains.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Rushley, stephanie.s.rushley.civ@us.navy.mil

Supplementary Materials

    • Supplemental Materials (PDF 4.7883 MB)
Save
  • Adames, Á. F., 2017: Precipitation budget of the Madden–Julian oscillation. J. Atmos. Sci., 74, 17991817, https://doi.org/10.1175/JAS-D-16-0242.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, https://doi.org/10.1175/JCLI-D-12-00272.1.

    • Search Google Scholar
    • Export Citation
  • Barton, N., and Coauthors, 2021: The Navy’s Earth System Prediction Capability: A new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth Space Sci., 8, e2020EA001199, https://doi.org/10.1029/2020EA001199.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1995: The linear and nonlinear extratropical response of the atmosphere to tropical intraseasonal heating. J. Atmos. Sci., 52, 44484471, https://doi.org/10.1175/1520-0469(1995)052<4448:TLANER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and T. Ambrizzi, 2005: Opposite phases of the Antarctic oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J. Climate, 18, 702718, https://doi.org/10.1175/JCLI-3284.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., 2021: Diversity of the global teleconnections associated with the Madden–Julian oscillation. J. Climate, 34, 397414, https://doi.org/10.1175/JCLI-D-20-0357.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Search Google Scholar
    • Export Citation
  • Delaunay, A., and H. M. Christensen, 2022: Interpretable deep learning for probabilistic MJO prediction. Geophys. Res. Lett., 49, e2022GL098566, https://doi.org/10.1029/2022GL098566.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, D. A. Randall, and M. A. Branson, 2014: Intraseasonal variability in coupled GCMs: The roles of ocean feedbacks and model physics. J. Climate, 27, 49704995, https://doi.org/10.1175/JCLI-D-13-00760.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., J. J. Benedict, N. P. Klingaman, S. J. Woolnough, and D. A. Randall, 2016: Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 121, 83508373, https://doi.org/10.1002/2016JD025098.

    • Search Google Scholar
    • Export Citation
  • Deng, Y., and T. Jiang, 2011: Intraseasonal modulation of the North Pacific storm track by tropical convection in boreal winter. J. Climate, 24, 11221137, https://doi.org/10.1175/2010JCLI3676.1.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., and Y.-J. Kim, 2013: Interaction between the MJO and polar circulations. J. Climate, 26, 35623574, https://doi.org/10.1175/JCLI-D-11-00508.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci., 62, 40844094, https://doi.org/10.1175/JAS3582.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344354, https://doi.org/10.1111/j.1600-0870.2007.00230.x.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., W. Chen, Y. Li, C. Schwartz, P. Yadav, and D. Domeisen, 2022: The winter North Pacific teleconnection in response to ENSO and the MJO in operational subseasonal forecasting models is too weak. J. Climate, 35, 80138030, https://doi.org/10.1175/JCLI-D-22-0179.1.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation. Geophys. Res. Lett., 44, 25882596, https://doi.org/10.1002/2016GL072430.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S.-W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, https://doi.org/10.1175/MWR-D-12-00322.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., T. Shinoda, J. Lin, and E. K. M. Chang, 2017: Variations of Northern Hemisphere storm track and extratropical cyclone activity associated with the Madden–Julian oscillation. J. Climate, 30, 47994818, https://doi.org/10.1175/JCLI-D-16-0513.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analysis. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550, https://doi.org/10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244, https://doi.org/10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, https://doi.org/10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27 (3), 116125, https://doi.org/10.5670/oceanog.2014.73.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. Lipscomb, 2008: CICE: The Los Alamos sea ice model, documentation and software user’s manual, version 4.0. Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., C. J. Shreck III, J. A. Ridout, M. Flatau, N. P. Barton, E. J. Metzger, and C. A. Reynolds, 2018: Subseasonal forecasts of convectively coupled equatorial waves and the MJO: Activity and predictive skill. Mon. Wea. Rev., 146, 23372360, https://doi.org/10.1175/MWR-D-17-0261.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, E. D. Maloney, and D. E. Waliser, 2016: Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden-Julian Oscillation. Geophys. Res. Lett., 43, 10 41210 419, https://doi.org/10.1002/2016GL070898.

    • Search Google Scholar
    • Export Citation
  • Kang, D., D. Kim, M.-S. Ahn, and S.-I. An, 2021: The role of the background meridional moisture gradient on the propagation of the MJO over the Maritime Continent. J. Climate, 34, 65656581, https://doi.org/10.1175/JCLI-D-20-0085.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., D. Kim, S. Rushley, and E. Maloney, 2022: Seasonal locking of the MJO’s southward detour of the Maritime Continent: The role of the Australian monsoon. J. Climate, 35, 81538168, https://doi.org/10.1175/JCLI-D-22-0234.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, https://doi.org/10.1175/2009JCLI3063.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-S. Ahn, I. S. Kang, and A. D. D. Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, https://doi.org/10.1175/JCLI-D-14-00767.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 94259443, https://doi.org/10.1175/JCLI-D-18-0210.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 93149331, https://doi.org/10.1029/2019JD031139.

    • Search Google Scholar
    • Export Citation
  • Kim, H., Y. G. Ham, Y. S. Joo, and S. W. Son, 2021: Deep learning for bias correction of MJO prediction. Nat. Commun., 12, 3087, https://doi.org/10.1038/s41467-021-23406-3.

    • Search Google Scholar
    • Export Citation
  • Kim, H., S.-W. Son, H. Kim, K.-H. Seo, and M.-J. Kang, 2023: MJO influence on subseasonal-to-seasonal prediction in the Northern Hemisphere extratropics. J. Climate, 36, 79437956, https://doi.org/10.1175/JCLI-D-23-0139.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 77727784, https://doi.org/10.1002/2017JD027005.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, https://doi.org/10.1175/JCLI-D-13-00480.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., D. Kim, F. Vitart, V. E. Toma, J.-S. Kug, and P. J. Webster, 2016: MJO propagation across the Maritime Continent in the ECMWF ensemble prediction system. J. Climate, 29, 39733988, https://doi.org/10.1175/JCLI-D-15-0862.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293, https://doi.org/10.1175/2009JCLI2978.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and E. C. J. Oliver, 2015: Variations in global tropical cyclone activity and the Madden-Julian Oscillation since the midtwentieth century. Geophy. Res. Lett., 42, 41994207, https://doi.org/10.1002/2015GL063966.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, J. Camp, S. Wang, M. K. Tippett, and Q. Yang, 2020: Subseasonal predictions of tropical cyclone occurrence and ACE in the S2S dataset. Wea. Forecasting, 35, 921938, https://doi.org/10.1175/WAF-D-19-0217.1.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., and Coauthors, 2011: NOAA Climate Data Record (CDR) of daily Outgoing Longwave Radiation (OLR), version 1.2. NOAA National Climatic Data Center, accessed 1 July 2017, https://doi.org/10.7289/V5SJ1HH2.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050, https://doi.org/10.1175/2007JCLI1955.1.

    • Search Google Scholar
    • Export Citation
  • Lim, Y., S.-W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Climate, 31, 40754094, https://doi.org/10.1175/JCLI-D-17-0545.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., 2015: Subseasonal variability of North American wintertime surface air temperature. Climate Dyn., 45, 11371155, https://doi.org/10.1007/s00382-014-2363-6.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2009: The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 22502262, https://doi.org/10.1175/2009MWR2831.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Search Google Scholar
    • Export Citation
  • Liu, S., J.-X. Fu, Z. Wen, and P. Zhang, 2022: Diverse controlling mechanisms and teleconnections of three distinctive MJO types. Climate Dyn., 61, 789812, https://doi.org/10.1007/s00382-022-06604-7.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2002: An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15, 964982, https://doi.org/10.1175/1520-0442(2002)015<0964:AIOCLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386, https://doi.org/10.1175/JCLI-3212.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 5, https://doi.org/10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and H. H. Hendon, 2015: Subseasonal prediction of Australian summer monsoon anomalies. Geophys. Res. Lett., 42, 10 91310 919, https://doi.org/10.1002/2015GL067086.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., O. Alves, and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Niño. J. Atmos. Sci., 66, 966983, https://doi.org/10.1175/2008JAS2855.1.

    • Search Google Scholar
    • Export Citation
  • Martin, Z. K., E. A. Barnes, and E. Maloney, 2022: Using simple, explainable neural networks to predict the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 14, e2021MS002774, https://doi.org/10.1029/2021MS002774.

    • Search Google Scholar
    • Export Citation
  • Mayta, V. C., and Á. F. Adames Corraliza, 2024: The stirring tropics: The ubiquity of moisture modes and moisture–vortex instability. J. Climate, 37, 19811998, https://doi.org/10.1175/JCLI-D-23-0145.1.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, https://doi.org/10.1175/2010MWR3194.1.

    • Search Google Scholar
    • Export Citation
  • Neena, J. M., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, https://doi.org/10.1175/JCLI-D-13-00624.1.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, https://doi.org/10.1175/JAS-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, https://doi.org/10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., D. Kim, and Á. F. Adames, 2019: Changes in the MJO under greenhouse gas–induced warming in CMIP5 models. J. Climate, 32, 803821, https://doi.org/10.1175/JCLI-D-18-0437.1.

    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., M. A. Janiga, J. A. Ridout, and C. A. Reynolds, 2022: The impact of mean-state moisture biases on MJO skill in the navy ESPC. Mon. Wea. Rev., 150, 17251745, https://doi.org/10.1175/MWR-D-21-0225.1.

    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., D. Kang, D. Kim, S.-I. An, and T. Wang, 2023: MJO in different orbital regimes: Role of the mean state in the MJO’s amplitude during boreal winter. J. Climate, 36, 44754490, https://doi.org/10.1175/JCLI-D-22-0725.1.

    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., M. A. Janiga, W. Crawford, C. A. Reynolds, W. Komaromi, and J. McLay, 2024: The impact of analysis correction-based additive inflation on subseasonal tropical prediction in the Navy Earth System Prediction Capability. Wea. Forecasting, 39, 421440, https://doi.org/10.1175/WAF-D-23-0046.1.

    • Search Google Scholar
    • Export Citation
  • Shin, N.-Y., D. Kim, D. Kang, H. Kim, and J.-S. Kug, 2024: Deep learning reveals moisture as the primary predictability source of MJO. npj Climate Atmos. Sci., 7, 11, https://doi.org/10.1038/s41612-023-00561-6.

    • Search Google Scholar
    • Export Citation
  • Silini, R., M. Barreiro, and C. Masoller, 2021: RETRACTED ARTICLE: Machine learning prediction of the Madden-Julian oscillation. npj Climate Atmos. Sci., 4, 57, https://doi.org/10.1038/s41612-021-00214-6.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609, https://doi.org/10.1002/qj.49712555411.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., E. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657, https://doi.org/10.1038/ngeo312.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., E. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2, 2, https://doi.org/10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and Coauthors, 2022: Advances in the prediction of MJO teleconnections in the S2S forecast systems. Bull. Amer. Meteor. Soc., 103, E1426E1447, https://doi.org/10.1175/BAMS-D-21-0130.1.

    • Search Google Scholar
    • Export Citation
  • Toms, B. A., K. Kashinath, Prabhat, and D. Yang, 2021: Testing the reliability of interpretable neural networks in geoscience using the Madden–Julian oscillation. Geosci. Model Dev., 14, 44954508, https://doi.org/10.5194/gmd-14-4495-2021.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. Maloney, and E. A. Barnes, 2020: The consistency of MJO teleconnection patterns on interannual time scales. J. Climate, 33, 34713486, https://doi.org/10.1175/JCLI-D-19-0510.1.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., 2023: How important are horizontal eddy moisture transports for the MJO’s eastward propagation? Geophys. Res. Lett., 50, e2023GL103944, https://doi.org/10.1029/2023GL103944.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020a: MJO teleconnections over the PNA region in climate models. Part I: Performance- and process-based skill metrics. J. Climate, 33, 10511067, https://doi.org/10.1175/JCLI-D-19-0253.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020b: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic state. J. Climate, 33, 50815101, https://doi.org/10.1175/JCLI-D-19-0865.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498, https://doi.org/10.1175/2008JCLI2595.1.

    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., and E. D. Maloney, 2015: Objective diagnostics and the Madden–Julian oscillation. Part II: Application to moist static energy and moisture budgets. J. Climate, 28, 77867808, https://doi.org/10.1175/JCLI-D-14-00689.1.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, C., and E. K. M. Chang, 2019: The role of MJO propagation, lifetime, and intensity on modulating the temporal evolution of the MJO extratropical response. J. Geophys. Res. Atmos., 124, 53525378, https://doi.org/10.1029/2019JD030258.

    • Search Google Scholar
    • Export Citation
  • Zheng, C., E. K.-M. Chang, H.-M. Kim, M. Zhang, and W. Wang, 2018: Impacts of the Madden–Julian oscillation on storm-track activity, surface air temperature, and precipitation over North America. J. Climate, 31, 61136134, https://doi.org/10.1175/JCLI-D-17-0534.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., H. Kim, and D. E. Waliser, 2021: Atmospheric river lifecycle responses to the Madden-Julian oscillation. Geophy. Res. Lett., 48, e2020GL090983, https://doi.org/10.1029/2020GL090983.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., S. Wang, J. Fang, and D. Yang, 2023: The maritime continent barrier effect on the MJO teleconnections during the boreal winter seasons in the Northern Hemisphere. J. Climate, 36, 171192, https://doi.org/10.1175/JCLI-D-21-0492.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., L. Wang, P.-C. Hsu, T. Li, and B. Xiang, 2024: Understanding the factors controlling MJO prediction skill across events. J. Climate, 37, 53235336, https://doi.org/10.1175/JCLI-D-23-0635.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4610 4610 4610
Full Text Views 261 261 34
PDF Downloads 117 117 20